Gennady L Rusinov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9705711/publications.pdf

Version: 2024-02-01

222 papers 2,250 citations

331670 21 h-index 454955 30 g-index

240 all docs

240 docs citations

240 times ranked

1817 citing authors

#	Article	IF	CITATIONS
1	Design of fluorescent sensors based on azaheterocyclic push-pull systems towards nitroaromatic explosives and related compounds: A review. Dyes and Pigments, 2020, 180, 108414.	3.7	89
2	Synthesis, spectral and electrochemical properties of pyrimidine-containing dyes as photosensitizers for dye-sensitized solar cells. Dyes and Pigments, 2014, 100, 201-214.	3.7	74
3	Detection of nitroaromatic explosives by new D–π–A sensing fluorophores on the basis of the pyrimidine scaffold. Analytical and Bioanalytical Chemistry, 2016, 408, 4093-4101.	3.7	49
4	New 4,5-di(hetero)arylpyrimidines as sensing elements for detection of nitroaromatic explosives in vapor phase. Dyes and Pigments, 2017, 137, 360-371. Combination of the Suzukia Cambination of the Suzukia Camb	3.7	39
5			

#	Article	IF	CITATIONS
19	Fluorinated lithium 1,3-diketonates as reagents to modify podands and crown-ethers. Journal of Fluorine Chemistry, 2007 , 128 , 762 - 768 .	1.7	22
20	Novel bis[(1,2,3-triazolyl)methyl]carborane derivatives via regiospecific copper-catalyzed 1,3-dipolar cycloaddition. Polyhedron, 2012, 42, 302-306.	2.2	22
21	Development of new antituberculosis drugs among of 1,3- and 1,4-diazines. Highlights and perspectives. Russian Chemical Bulletin, 2019, 68, 2172-2189.	1.5	22
22	A simple one pot synthesis of condensed 1,2,4â€ŧriazines by using the tandem a _{Nâ€} S _N ^{ipso} and S _N ^H â€6 _N ^{ipsa} reactions. Journal of Heterocyclic Chemistry, 2001, 38, 901-907.	2.6	21
23	One-Step Heterylation at the Upper Rim of Calix[4] arene with 1,2,4-Triazin-5(2H)-ones. Journal of Organic Chemistry, 2006, 71, 8272-8275.	3.2	20
24	Catalytic effect of nanosized metal oxides in the Biginelli reaction. Kinetics and Catalysis, 2011, 52, 226-233.	1.0	20
25	Synthesis and evaluation of antitubercular activity of fluorinated 5-aryl-4-(hetero)aryl substituted pyrimidines. Bioorganic and Medicinal Chemistry, 2016, 24, 3771-3780.	3.0	20
26	Synthesis and characterization of linear 1,4-diazine-triphenylamine–based selective chemosensors for recognition of nitroaromatic compounds and aliphatic amines. Dyes and Pigments, 2020, 178, 108344.	3.7	20
27	Synthesis, photophysical and nonlinear optical properties of [1,2,5]oxadiazolo[3,4-b]pyrazine-based linear push-pull systems. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 404, 112900.	3.9	20
28	1,2,4,5-Tetrazines and Azolo[1,2,4,5]tetrazines: Synthesis and Reactions with Nucleophiles. Chemistry of Heterocyclic Compounds, 2013, 49, 66-91.	1.2	19
29	Synthesis and antituberculosis activity of novel 5-styryl-4-(hetero)aryl-pyrimidines via combination of the Pd-catalyzed Suzuki cross-coupling and SNH reactions. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3118-3120.	2.2	19
30	Synthesis, and structure–activity relationship for C(4) and/or C(5) thienyl substituted pyrimidines, as a new family of antimycobacterial compounds. European Journal of Medicinal Chemistry, 2015, 97, 225-234.	5 . 5	19
31	C–H functionalization of azines. Anodic dehydroaromatization of 9-(hetero)aryl-9,10-dihydroacridines. RSC Advances, 2016, 6, 77834-77840.	3.6	19
32	Synthesis and antimycobacterial activity of imidazo[1,2-b][1,2,4,5]tetrazines. European Journal of Medicinal Chemistry, 2019, 178, 39-47.	5 . 5	19
33	New V-shaped push-pull systems based upon 4,5-di(hetero)aryl substituted pyrimidines: their synthesis and application for the detection of nitroaromatic explosives. Arkivoc, 2016, 2016, 360-373.	0.5	19
34	Novel fluorophores based on imidazopyrazine derivatives: Synthesis and photophysical characterization focusing on solvatochromism and sensitivity towards nitroaromatic compounds. Dyes and Pigments, 2019, 168, 248-256.	3.7	18
35	1,3-Dipolar cycloaddition of [(o-carboran-1-yl)methyl]azide to alkynes. Doklady Chemistry, 2010, 434, 245-248.	0.9	17
36	Catalytic effect of nanosized metal oxides on the Hantzsch reaction. Kinetics and Catalysis, 2010, 51, 566-572.	1.0	16

#	Article	IF	Citations
37	5-(Methylidene)barbituric acid as a new anchor unit for dye-sensitized solar cells (DSSC). Arkivoc, 2014, 2014, 123-131.	0.5	16
38	Synthesis and biological evaluation of novel 5-aryl-4-(5-nitrofuran-2-yl)-pyrimidines as potential anti-bacterial agents. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3003-3006.	2.2	16
39	Development of a novel 1-trifluoroacetyl piperidine-based electrolyte for aluminum ion battery. Electrochimica Acta, 2019, 323, 134806.	5.2	16
40	The effect of molecular structure on the efficiency of 1,4-diazine–based D–(π)–A push-pull systems for non-doped OLED applications. Dyes and Pigments, 2021, 187, 109124.	3.7	16
41	Catalytic systems based on the organic nickel(ii) complexes in chronoamperometric determination of urea and creatinine. Russian Chemical Bulletin, 2009, 58, 1119-1125.	1.5	15
42	Replacement of dimethylpyrazolyl group in 1,2,4,5-tetrazines by aliphatic alcohols and water. Russian Journal of Organic Chemistry, 2009, 45, 1102-1107.	0.8	15
43	Synthesis, structure, electrochemical and magnetic properties of 2,6-bis(5-trifluoromethylpyrazol-3-yl)pyridine and its Nill complexes. Russian Chemical Bulletin, 2012, 61, 313-325.	1.5	15
44	A new and convenient synthetic way to 2-substituted thieno[2,3-b]indoles. Beilstein Journal of Organic Chemistry, 2015, 11, 1000-1007.	2.2	15
45	Linear and V-shaped push–pull systems on a base of pyrimidine scaffold with a pyrene-donative fragment for detection of nitroaromatic compounds. Journal of the Iranian Chemical Society, 2018, 15, 787-797.	2.2	15
46	A new convenient synthetic route towards 2-(hetero)aryl-substituted thieno[3,2- <i>b</i>) indoles using Fischer indolization. Organic and Biomolecular Chemistry, 2018, 16, 4821-4832.	2.8	15
47	Metal and silicon oxides as efficient catalysts for the preparative organic chemistry. Russian Chemical Reviews, 2015, 84, 1294-1315.	6.5	14
48	9-Ethyl-3-{6-(het)aryl-[1,2,5]oxadiazolo[3,4-b]pyrazin-5-yl}-9H-carbazoles: synthesis and study of sensitivity to nitroaromatic compounds. Russian Chemical Bulletin, 2018, 67, 1078-1082.	1.5	14
49	Benzo[<i>b</i>]selenophene/thieno[3,2- <i>b</i>]indole-Based N,S,Se-Heteroacenes for Hole-Transporting Layers. ACS Omega, 2020, 5, 9377-9383.	3.5	14
50	Nano-sized octa-nuclear nickel cationic complex: self-assembly on supramolecular level. Inorganica Chimica Acta, 2002, 334, 334-342.	2.4	13
51	Chemistry of O- and C-adducts derived from 1,4-diazinium salts: the use of tetrahydropyrazines in the synthesis of condensed systems. Mendeleev Communications, 2006, 16, 26-29.	1.6	13
52	Unusual Expansion of the 1,2,4,5â€Tetrazine Ring in [1,2,4]Triazolo[4,3â€ <i>b</i>][1,2,4,5]tetrazines Leading to [1,2,4,6]Tetrazepine Systems. European Journal of Organic Chemistry, 2011, 2011, 2309-2318.	2.4	13
53	Dithienoquinazolines – A Convenient Synthesis by the Oxidative Photocyclization of 4,5â€Dithienylâ€Substituted Pyrimidines and Their Photophysical Properties. European Journal of Organic Chemistry, 2014, 2014, 8133-8141.	2.4	13
54	Microwave-assisted synthesis of 4-(2,2'-bithiophen-5-yl)-5-phenylpyrimidine derivatives as sensors for detection of nitroaromatic explosives. Chemistry of Heterocyclic Compounds, 2016, 52, 904-909.	1.2	13

#	Article	IF	CITATIONS
55	Heteroacenes Bearing the Pyrimidine Scaffold: Synthesis, Photophysical and Electrochemical Properties. European Journal of Organic Chemistry, 2016, 2016, 1420-1428.	2.4	13
56	Efficient and scalable synthesis of 3-(polyfluoroacyl)pyruvaldehydes dimethyl acetals: A novel functionalized fluorinated building-block. Journal of Fluorine Chemistry, 2017, 199, 39-45.	1.7	13
57	Direct (het)arylation of [1,2,4]triazolo[1,5- a]pyrimidines: Both eliminative and oxidative pathways. Tetrahedron, 2017, 73, 5500-5508.	1.9	13
58	New 5-arylamino-4-(5-nitrofuran-2-yl)pyrimidines as promising antibacterial agents. Mendeleev Communications, 2018, 28, 393-395.	1.6	13
59	4-Hydroxyproline containing podands as new chiralcatalysts for the asymmetric Biginelli reaction. Mendeleev Communications, 2018, 28, 357-358.	1.6	13
60	Dibenzo[f,h]furazano[3,4-b]quinoxalines: Synthesis by Intramolecular Cyclization through Direct Transition Metal-Free C–H Functionalization and Electrochemical, Photophysical, and Charge Mobility Characterization. ACS Omega, 2020, 5, 8200-8210.	3.5	13
61	Rapid and sensitive determination of nitrobenzene in solutions and commercial honey samples using a screen-printed electrode modified by $1,3-1,4$ -diazines. Food Chemistry, 2022, 372, 131279.	8.2	13
62	Reactions of 1,2,4,5-tetrazines with S-nucleophiles. Russian Chemical Bulletin, 2011, 60, 985-991.	1.5	12
63	Catalysts for enantioselective Biginelli reaction based on the composite silica-zirconia xerogels prepared using different zirconium sources. Journal of Sol-Gel Science and Technology, 2014, 69, 448-452.	2.4	12
64	Synthesis, Toxicity, and Antituberculosis Activity of Isoniazid Derivatives Containing Sterically Hindered Phenols. Pharmaceutical Chemistry Journal, 2014, 48, 5-7.	0.8	12
65	Direct arylalkenylation of furazano[3,4-b]pyrazines via a new C–H functionalization protocol. Tetrahedron Letters, 2015, 56, 1865-1869.	1.4	12
66	A new synthetic approach to fused nine-ring systems of the indolo[3,2-b]carbazole family through double Pd-catalyzed intramolecular C–H arylation. RSC Advances, 2016, 6, 70106-70116.	3.6	12
67	A convenient synthesis of new 5,11-dihydroindolo[3,2- b] carbazoles bearing thiophene, 2,2â \in 2-bithiophene or 2,2â \in 2:5â \in 2,2â \in 3-terthiophene units at C-2 and C-8 positions. Tetrahedron Letters, 2017, 58, 3139-3142.	1.4	12
68	A New Family of Fused Azolo[1,5- <i>a</i>]pteridines and Azolo[5,1- <i>b</i>]purines. ACS Omega, 2020, 5, 18226-18233.	3.5	12
69	Pyrimidine-Based Push–Pull Systems with a New Anchoring Amide Group for Dye-Sensitized Solar Cells. Electronic Materials, 2021, 2, 142-153.	1.9	12
70	Push–Pull Derivatives Based on 2,4′-Biphenylene Linker with Quinoxaline, [1,2,5]Oxadiazolo[3,4-B]Pyrazine and [1,2,5]Thiadiazolo[3,4-B]Pyrazine Electron Withdrawing Parts. Molecules, 2022, 27, 4250.	3.8	12
71	Synthesis of 4-(thien-2-yl)-substituted coumarins through Lewis acid catalyzed Michael addition of thiophenes to 3-benzoylcoumarins followed by oxidation. Tetrahedron Letters, 2014, 55, 3603-3606.	1.4	11
72	Synthesis, antimycobacterial and antifungal evaluation of some new 1-ethyl-5-(hetero)aryl-6-styryl-1,6-dihydropyrazine-2,3-dicarbonitriles. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 524-528.	2.2	11

#	Article	IF	Citations
73	C–H functionalization of triazolo[a]-annulated 8-azapurines. Tetrahedron Letters, 2016, 57, 2303-2305.	1.4	11
74	Direct Modification of Quercetin by 6-Nitroazolo[1,5-a]Pyrimidines. Chemistry of Natural Compounds, 2016, 52, 708-710.	0.8	11
75	Construction of new heteroacenes based on benzo[b]thieno[2,3-d]thiophene / quinoline or 1,8-naphthyridine systems using the Friedläder reaction. Tetrahedron Letters, 2019, 60, 1135-1138.	1.4	11
76	Azines as unconventional anchoring groups for dye-sensitized solar cells: The first decade of research advances and a future outlook. Dyes and Pigments, 2021, 194, 109650.	3.7	11
77	Direct Modification of Benzoannelated Crown Ethers with 1,2,4-Triazin-5(2H)-one Moieties. Heterocycles, 2001, 55, 2349.	0.7	11
78	Regioselective C2- and C8-Acylation of 5,11-Dihydroindolo[3,2-b]carbazoles and the Synthesis of Their 2,8-Bis(quinoxalinyl) Derivatives. Synthesis, 2015, 47, 3561-3572.	2.3	10
79	Assembly of annulated 1,3-diazapyrenes by consecutive cross-coupling and cyclodehydrogenation of (het)arene moieties. Mendeleev Communications, 2020, 30, 142-144.	1.6	10
80	Synthesis of [2,3-b]thieno- and furoquinoxalines by the and reactions of 2-substituted quinoxalines with acetophenones. Mendeleev Communications, 2006, 16, 16-18.	1.6	9
81	HETARYL DISPLACEMENT IN 3,6-DISUBSTITUTED 1,2,4,5-TETRAZINES WITH ANHYDRO BASES OF N-METHYLQUINALDINIUMS. Heterocyclic Communications, 2006, 12, .	1.2	9
82	A new approach to incorporate the carboranyl fragment into 2,5-diazabicyclo[2.2.2]oct-2-enes. Mendeleev Communications, 2009, 19, 243-245.	1.6	9
83	Reactions of pyrazinium salts with phenols:from l̃fH-adducts to SN Hproducts and transformations into benzo[b]furans. Russian Chemical Bulletin, 2011, 60, 919-928.	1.5	9
84	Unusual heterocyclization of chalcone podands with 3-amino-1,2,4-triazole. Russian Chemical Bulletin, 2011, 60, 965-974.	1.5	9
85	Synthesis and transformations of cyanomethyl-1,2,4,5-tetrazines. Chemistry of Heterocyclic Compounds, 2013, 49, 604-617.	1.2	9
86	2-Azido-5-nitropyrimidine: Synthesis, Molecular Structure, and Reactions with N-, O-, and S-Nucleophiles. Chemistry of Heterocyclic Compounds, 2013, 49, 766-775.	1.2	9
87	Stable \ddot{l}_f H-adducts in the reactions of the acridinium cation with heterocyclic N-nucleophiles. Russian Chemical Bulletin, 2013, 62, 773-779.	1.5	9
88	Tetrazole derivatives of chitosan: synthetic approaches and evaluation of toxicity. Russian Chemical Bulletin, 2014, 63, 1624-1632.	1.5	9
89	2-amino-5-aryl- and 2-amino-5-hetaryl-3-cyano-6-(2-thienyl)pyridines as Organic Dyes for Dye-Sensitized Solar Cells: Synthesis, Quantum-Chemical Calculations, Spectral and Electrochemical Properties. Chemistry of Heterocyclic Compounds, 2014, 50, 814-827.	1.2	9
90	Synthesis and antifungal activity of 3-substituted imidazo[1,2-b][1,2,4,5]tetrazines. Russian Chemical Bulletin, 2015, 64, 2100-2105.	1.5	9

#	Article	IF	Citations
91	Synthesis of $2\mathfrak{D}$ -azolo[1,5- \mathfrak{D} °][1,2,3]triazolo[4,5- $\mathfrak{D}\mu$]pyrimidines. Chemistry of Heterocyclic Compounds, 2015, 51, 491-495.	1.2	9
92	Synthesis, crystal structure and fluorescent properties of indolo[3,2-b]carbazole-based metal–organic coordination polymers. Polyhedron, 2018, 141, 337-342.	2.2	9
93	New chiral proline-based catalysts for silicon and zirconium oxides-promoted asymmetric Biginelli reaction. Chemistry of Heterocyclic Compounds, 2018, 54, 417-427.	1.2	9
94	Synthesis of Heteroannulated Indolopyrazines through Domino N–H Palladium-Catalyzed/Metal-Free Oxidative C–H Bond Activation. ACS Omega, 2020, 5, 15681-15690.	3.5	9
95	Investigation of 4,6-di(hetero)aryl-substituted pyrimidines as emitters for non-doped OLED and laser dyes. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 408, 113089.	3.9	9
96	Renaissance of 4-(5-nitrofuran-2-yl)-5-arylamino substituted pyrimidines: microwave-assisted synthesis and antitubercular activity. Mendeleev Communications, 2021, 31, 210-212.	1.6	9
97	A facile, metal-free, oxidative coupling of new 6-(hetero)aryl-[1,2,5]-oxadiazolo[3,4-b]pyrazines with pyrroles, indoles and carbazoles. Arkivoc, 2017, 2016, 279-300.	0.5	9
98	2,3-Dichloro-1-alkylpyrazinium tetrafluoroborates: the synthesis and reactions with nucleophiles. Mendeleev Communications, 2001, 11, 78-80.	1.6	8
99	Design of fused systems based on ÏfH-adducts of 6-nitro-1,2,4-triazolo[1,5-a]pyrimidine with Ï€-excessive heteroaromatic compounds. Russian Chemical Bulletin, 2009, 58, 1309-1314.	1.5	8
100	Pre-organization of diarylideneacetonyl crownophanes in single crystals to photochemical transformations. Russian Chemical Bulletin, 2011, 60, 824-840.	1.5	8
101	Synthesis, photochemical and luminescent properties of (E)-2-(2-hydroxyarylethylene)-3-phenylquinazolin-4(3H)-ones. Russian Chemical Bulletin, 2014, 63, 2467-2477.	1.5	8
102	Synthesis and tuberculostatic activity of amine-substituted 1,2,4,5-tetrazines and pyridazines. Russian Chemical Bulletin, 2014, 63, 1423-1430.	1.5	8
103	Diaryl-Substituted Polyethers with Acetoacet-Anilide Fragment in the Synthesis of Dihydro-Pyrimidine-Containing Podands*. Chemistry of Heterocyclic Compounds, 2014, 50, 998-1004.	1.2	8
104	Electron-hole mobility in 6,12-di(2-thienyl)indolo[3,2-b]carbazoles. Mendeleev Communications, 2016, 26, 516-517.	1.6	8
105	Nitration of 5,11-dihydroindolo[3,2-b]carbazoles and synthetic applications of their nitro-substituted derivatives. Beilstein Journal of Organic Chemistry, 2017, 13, 1396-1406.	2.2	8
106	Synthesis and biological activity of 3-guanidino-6-R-imidazo[1,2-b]- and 6-guanidino-3-R-[1,2,4]triazolo[4,3-b][1,2,4,5]tetrazines. Russian Chemical Bulletin, 2018, 67, 2079-2087.	1.5	8
107	A new route towards dithienoquinazoline and benzo[f]thieno[3,2-h]quinazoline systems using Pd-catalyzed intramolecular cyclization under microwave irradiation. Arkivoc, 2016, 2016, 204-216.	0.5	8
108	Theoretical investigation of the antituberculosis activity of compounds of the dihydropyrimidine series. Pharmaceutical Chemistry Journal, 2008, 42, 622-625.	0.8	7

#	Article	IF	CITATIONS
109	Synthesis of 5-trifluoromethylpyrazol-1-yl-substituted 1,2,4,5-tetrazines. Chemistry of Heterocyclic Compounds, 2010, 46, 691-698.	1.2	7
110	Consecutive SNHand Suzuki-Miyaura Cross-Coupling Reactions - an Efficient Synthetic Strategy to Pyrimidines Bearing Pyrrole and Indole Fragments. European Journal of Organic Chemistry, 2012, 2012, n/a-n/a.	2.4	7
111	Specific features of heterocyclization of (E)-3-(2-ethoxyphenyl)-1-phenylprop-2-en-1-one with aminoazoles. Russian Chemical Bulletin, 2014, 63, 1552-1576.	1.5	7
112	Synthesis and Tuberculostatic Activity of Pyrrolyl and Pyrazolinyl Podands. Chemistry of Heterocyclic Compounds, 2014, 50, 946-957.	1.2	7
113	New "turn-off" fluorescence sensors to detect vapors of nitro-explosives on the basis of 4,6-bis[5-(heteroaryl)thiophen-2-yl] substituted 5-(4-tert-butylphenyl)pyrimidines. Arkivoc, 2017, 2017, 341-355.	0.5	7
114	Novel push-pull thieno [2,3-b] indole-based dyes for efficient dye-sensitized solar cells (DSSCs). Arkivoc, 2017, 2017, 34-50.	0.5	7
115	Synthesis, photochemical and luminescent properties of ortho-hydroxystyrylquinazolinone-linked benzocrown ethers. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 351, 16-28.	3.9	7
116	First Example of C–H Functionalisation in the 6-Nitroazolo[5,1-c]triazine Series. Synthesis, 2018, 50, 4889-4896.	2.3	7
117	Modifications of 5,12-dihydroindolo[3,2-a]carbazole scaffold via its regioselective C2,9-formylation and C2,9-acetylation. Tetrahedron, 2019, 75, 4686-4696.	1.9	7
118	Synthesis and photovoltaic properties of new thieno [3,2-b] indole-based dyes. Russian Chemical Bulletin, 2019, 68, 1208-1212.	1.5	7
119	New approach to unsymmetrical 1,3-diazatriphenylenes through intramolecular oxidative cyclodehydrogenation. Tetrahedron, 2019, 75, 2687-2696.	1.9	7
120	Three-component green synthesis of 6-ethoxycarbonyl-5-methyl-7-(thien-2-yl)-4,7-dihydro[1,2,4]triazolo[1,5-a]pyrimidine, a promising antituberculosis drug. Russian Chemical Bulletin, 2019, 68, 2271-2274.	1.5	7
121	Access to azolopyrimidine-6,7-diamines as a valuable "building-blocks―to develop new fused heteroaromatic systems. Tetrahedron, 2021, 89, 132172.	1.9	7
122	Direct C-C Coupling of meso-Octamethylcalix[4]pyrrole with 6-Nitroazolopyrimidines. Heterocycles, 2005, 66, 543.	0.7	7
123	Acid-promoted direct C-C coupling of 1,3-diazines and 1,2,4-triazines with aryl-containing macrocyclic compounds and their open-chain analogues. Arkivoc, 2005, 2004, $6-13$.	0.5	7
124	Performance evaluation of dye-sensitized solar cells (DSSCs) based on metal-free thieno[3,2-b]indole dyes. Journal of Materials Science: Materials in Electronics, 2022, 33, 6307-6317.	2.2	7
125	First example of cine-substitution for halogens in azolopyrimidines. Mendeleev Communications, 1999, 9, 233-234.	1.6	6
126	Interaction of 5-methoxy-1,2,4-triazines with ureas as a new route to 6-azapurines. Mendeleev Communications, 2000, 10, 58-59.	1.6	6

#	Article	IF	Citations
127	Theoretical studies of the electronic and structural features of the fragments of dihydropholate reductase inhibitors. Journal of Structural Chemistry, 2009, 50, 982-988.	1.0	6
128	Bis(acetylaryl) podands in the synthesis of fluorine-containing bis(\hat{l}^2 -diketones) joined by a polyether spacer. Russian Chemical Bulletin, 2010, 59, 2122-2125.	1.5	6
129	Synthesis of 5-(het)aryl- and 4,5-di(het)aryl-2-(thio)morpholinopyrimidines from 2-chloropyrimidine via SN H and cross-coupling reactions. Russian Chemical Bulletin, 2014, 63, 1350-1358.	1.5	6
130	Synthesis and properties of new π-conjugated imidazole/carbazole structures. Dyes and Pigments, 2017, 141, 512-520.	3.7	6
131	The portable detector of nitro-explosives in vapor phase with new sensing elements on a base of pyrimidine scaffold. Journal of Physics: Conference Series, 2017, 830, 012159.	0.4	6
132	Synthesis of dithienoquinazolines from pyrimidines via intramolecular nucleophilic aromatic substitution of hydrogen. Chemistry of Heterocyclic Compounds, 2017, 53, 1156-1160.	1.2	6
133	Diazatriphenylenes and their thiophene analogues: synthesis and applications. Arkivoc, 2017, 2017, 356-401.	0.5	6
134	Synthesis, crystal structure and optical properties of 1,1'-(1,n-alkanediyl)bis(3-methylimidazolium) halobismuthates. Journal of Molecular Structure, 2018, 1151, 186-190.	3.6	6
135	New push–pull system based on 4,5,6-tri(het)arylpyrimidine containing carbazole substituents: synthesis and sensitivity toward nitroaromatic compounds. Chemistry of Heterocyclic Compounds, 2018, 54, 604-611.	1.2	6
136	Effective method for the synthesis of azolo[1,5-a]pyrimidin-7-amines. Chemistry of Heterocyclic Compounds, 2019, 55, 573-577.	1.2	6
137	One-pot synthesis of 2-substituted thieno[3,2-b]indoles from 3-aminothiophene-2-carboxylates through in situ generated 3-aminothiophenes. Tetrahedron Letters, 2019, 60, 151185.	1.4	6
138	In silico consensus activity prediction, rational synthesis, and evaluation of antiglycation and antiplatelet activities of 3,6-disubstituted 1,2,4,5-tetrazines. Russian Chemical Bulletin, 2020, 69, 768-773.	1.5	6
139	Synthesis, X-ray crystal structure and antimycobacterial activity of enantiomerically pure 1-ethyl-2,3-dicyano-5-(het)aryl-6-hetaryl-1,6-dihydropyrazines. Arkivoc, 2014, 2014, 247-270.	0.5	6
140	UNEXPECTED PRODUCTS IN THE REACTIONS OF s-TETRAZINE HYDRAZONES WITH ENAMINES. Heterocyclic Communications, 2003, 9, .	1.2	5
141	\ddot{l}_f H-Adducts of N-alkylpyrazinium and quinoxalinium salts with nucleophiles. The 1H and 13C NMR spectra and the crystal structures of P-adducts. Russian Chemical Bulletin, 2009, 58, 176-181.	1.5	5
142	Changes in the vibrational characteristics of substituted 1,2,4,5-tetrazines after complexation with 1,2,3-benzotriazole: A theoretical study. Journal of Structural Chemistry, 2009, 50, 1053-1058.	1.0	5
143	Molecular structures of chalcone podands: A prognosis of photoinduced transformations in the crystals. Crystallography Reports, 2009, 54, 31-39.	0.6	5
144	Synthesis, structures, and magnetic properties of crystals of dinuclear copper(II) and cobalt(II) complexes with 3-(3,5-dimethylpyrazol-1-yl)-6-R-1,2,4,5-tetrazines. Russian Chemical Bulletin, 2010, 59, 717-723.	1.5	5

#	Article	IF	CITATIONS
145	Synthesis and tuberculostatic activity of podands with a dihydropyrimidine fragment. Russian Chemical Bulletin, 2016, 65, 1360-1364.	1.5	5
146	Synthesis and reactions of 7-phenylimidazo[1,2-b][1,2,4,5]tetrazines with nucleophiles. Russian Chemical Bulletin, 2018, 67, 1716-1723.	1.5	5
147	Multicomponent reactions in the synthesis of dihydropyrimidine-containing podands having tuberculostatic activity. Russian Chemical Bulletin, 2018, 67, 743-746.	1.5	5
148	Synthesis of aryl-substituted thieno [3,2-b] thiophene derivatives and their use for N,S-heterotetracene construction. Beilstein Journal of Organic Chemistry, 2019, 15, 2678-2683.	2.2	5
149	Construction of 2,3-disubstituted benzo $[\langle i \rangle b \langle i \rangle]$ thieno $[2,3-\langle i \rangle d \langle i \rangle]$ thiophenes and benzo $[4,5]$ selenopheno $[3,2-\langle i \rangle b \langle i \rangle]$ thiophenes using the Fiesselmann thiophene synthesis. Organic and Biomolecular Chemistry, 2020, 18, 3164-3168.	2.8	5
150	New approach to 5-arylamino-4-(5-aryloxyfuran-2-yl)pyrimidines: synthesis and antibacterial activity. Russian Chemical Bulletin, 2021, 70, 937-942.	1.5	5
151	New push-pull systems based on indolo[3,2-b]carbazole and 1,2,4,5-tetrazine: synthesis, photophysical, and charge transport properties. Russian Chemical Bulletin, 2021, 70, 1109-1117.	1.5	5
152	Synthesis of New Sorbents on the Basis of Dibenzocrown Ethers Chemically Attached to Magnetic Particles Fe@C. Macroheterocycles, 2014, 7, 23-27.	0.5	5
153	The First Example of Cascade Synthesis of Alkaloid-like Subunit Incorporated into Crown Ethers. Macroheterocycles, 2010, 3, 108-113.	0.5	5
154	THE FIRST CASE OF DIRECT COUPLING OF HETEROCYCLES WITH CA LI XA REN ES. REACTION OF RESORCINARENES WITH 1,2,4-TRIAZIN-5(2H)-ONES. Heterocyclic Communications, 2004, 10, .	1.2	4
155	Cyclization of (1,2,4,5-tetrazin-3-yl)hydrazones to 3,7-dihydro-1,2,4-triazolo[4,3-b]-1,2,4,5-tetrazines. Russian Chemical Bulletin, 2009, 58, 1281-1290.	1.5	4
156	Reactions of 3,6-Bis(3,5-dimethyl-4-R-pyrazol-1-yl)-1,2,4,5-tetrazines with Indole and 1,3,3-Trimethyl-2-methyleneindoline. Heterocycles, 2011, 83, 1363.	0.7	4
157	Intermolecular interactions in heteromolecular crystals of tetrazine derivatives with azoles. Journal of Structural Chemistry, 2011, 52, 1134-1138.	1.0	4
158	Catalytic effect of nanosized metal oxides on the knoevenagel reaction. Russian Journal of Applied Chemistry, 2012, 85, 656-660.	0.5	4
159	Synthesis and research of electrochemical behavior of magnetic nanocomposites based on Fe3O4. Russian Chemical Bulletin, 2013, 62, 2327-2336.	1.5	4
160	Metal-free protocol for the synthesis of novel 6-(het)aryl-5-aryl-5H-imidazo[4,5-b][1,2,5]oxadiazolo[3,4-e]pyrazines. Mendeleev Communications, 2018, 28, 461-463.	1.6	4
161	4-(Het)aryl-4,7-dihydroazolopyrimidines and Their Tuberculostatic Activity. Russian Journal of Organic Chemistry, 2019, 55, 775-781.	0.8	4
162	New π-conjugated thieno[3,2-b]indole derivatives and charge carrier mobility in their thin films. Russian Chemical Bulletin, 2019, 68, 1204-1207.	1.5	4

#	Article	IF	CITATIONS
163	Synthesis of 2-(polyfluoromethyl)pyrimido-[1,2-a]benzimidazole-4-carbaldehyde derivatives. Mendeleev Communications, 2019, 29, 249-251.	1.6	4
164	One-pot approach to construct benzo[4,5]thieno[3,2-b]indoles, pyrido[3′,2':4,5]thieno[3,2-b]indoles and pyrazino[2′,3':4,5]thieno[3,2-b]indoles based on the Fischer indole synthesis. Tetrahedron, 2020, 76, 131723.	1.9	4
165	An Effective Route to Dithieno[3,2-b:2′,3′-d]thiophene-Based Hexaheteroacenes. Synlett, 2021, 32, 1009-1013.	1.8	4
166	Synthesis and tuberculostatic activity of new 3-alkylthio-6-R-[1,2,4]triazolo[4,3-b][1,2,4,5]tetrazines. Russian Chemical Bulletin, 2021, 70, 1093-1098.	1.5	4
167	Reactions of Radicals Generated from 1-Ethyl-1,4-diazinium-salts: Addition to the C-C Triple Bond versus Dimerization. Heterocycles, 2009, 78, 2315.	0.7	4
168	Modification of Macrocyclic Compounds by Azaheterocycles. Heterocycles, 2003, 61, 593.	0.7	4
169	Microwave-assisted synthesis and evaluation of antibacterial activity of novel 6-fluoroaryl-[1,2,4]triazolo[1,5-a]pyrimidines. Arkivoc, 2017, 2016, 268-278.	0.5	4
170	Photochemical transformations of chalcone-podands into cyclobutane-containing benzocrown ethers. Russian Chemical Bulletin, 2009, 58, 1180-1191.	1.5	3
171	Reactions of \ddot{l}_f H-adducts of 1-ethyl-1,4-diazinium salts with arylalkynes as a one-step approach to pyrrolo[1,2-a]pyrazine derivatives. Russian Chemical Bulletin, 2009, 58, 1291-1293.	1.5	3
172	On the composition of copper(II), cobalt(II), and nickel(II) complexes with some 3,6-disubstituted 1,2,4,5-tetrazines. Russian Journal of General Chemistry, 2010, 80, 1860-1863.	0.8	3
173	[4+2] Cycloaddition reactions of 1,2,4,5-tetrazines with allylcarboranes. Russian Chemical Bulletin, 2010, 59, 116-121.	1.5	3
174	Synthesis and use of polymer-immobilized calix[4] arene derivatives as molecular containers for nitrous gases. Russian Chemical Bulletin, 2014, 63, 1395-1398.	1.5	3
175	C-H-Functionalization of 1,2,4-triazines: oxidation and elimination pathways of aromatization of If H-adducts. Russian Chemical Bulletin, 2014, 63, 1359-1363.	1.5	3
176	Synthesis of 6-thienyl-substituted 2-amino-3-cyanopyridines. Russian Chemical Bulletin, 2015, 64, 689-694.	1.5	3
177	Synthesis of podands with dihydropyrimidine fragments based on polyethers with terminal acetoacetamide groups. Chemistry of Heterocyclic Compounds, 2015, 51, 478-482.	1.2	3
178	Electroluminescence and electron–hole mobility of 6,12-di(thien-2-il)indolo[3,2-b]carbazoles. Inorganic Materials: Applied Research, 2017, 8, 172-175.	0.5	3
179	Synthesis and structure of functionalized podands containing 4,7-dihydrotetrazolo[1,5-D°]pyrimidine ring. Differently substituted dihydropyrimidine podands. Chemistry of Heterocyclic Compounds, 2018, 54, 971-976.	1.2	3
180	Theoretical conformational studies of podands containing (2S,4R)-4-hydroxyproline moieties. Chemistry of Heterocyclic Compounds, 2019, 55, 755-761.	1.2	3

#	Article	IF	Citations
181	Features of a multicomponent Biginelli reaction involving 3-oxobutanoyl-containing podands, aromatic aldehydes, and 1,2,4-triazol-3-amine. Chemistry of Heterocyclic Compounds, 2020, 56, 88-91.	1.2	3
182	Ethynylation of [1,2,4]Triazolo[1,5―a]pyrimidinesUsing Substituted Ethynylmagnesium Bromides. ChemistrySelect, 2021, 6, 5167-5172.	1.5	3
183	Synthesis and Antitubercular Evaluation on Novel 1-Ethyl-5-(hetero)aryl-1,6-dihydropyrazine-2,3-dicarbonitriles and 3-Cyano-1-ethyl-5-(hetero) aryl-2(1H)-pyrazinones. Anti-Infective Agents, 2016, 14, 139-144.	0.4	3
184	Synthesis and properties of heterocycle-containing podands. Chemistry of Heterocyclic Compounds, 2021, 57, 971-983.	1.2	3
185	A new approach to 4-arylstyrenes: microwave-assisted synthesis and photophysical properties. Russian Chemical Bulletin, 2021, 70, 2139-2144.	1.5	3
186	New Approach to Biologically Active Indolo[2,3â€ <i>b</i>]quinoxaline Derivatives through Intramolecular Oxidative Cyclodehydrogenation. ChemistrySelect, 2022, 7, .	1.5	3
187	Study of the supramolecular structures of complexes of carborane-containing pyridazines with 2,3,5,6-tetrachloro-1,4-dihydroxybenzene. Crystallography Reports, 2014, 59, 202-206.	0.6	2
188	Electrophilic heterocyclization reactions of allylamino- and propargylamino-substituted sym-tetrazines in the presence of Hgl2. Chemistry of Heterocyclic Compounds, 2017, 53, 213-218.	1,2	2
189	Crown Ether–SiO2–TiO2 Composites in the Sorption of Metal Ions from Acidic Aqueous Solutions. Russian Journal of General Chemistry, 2018, 88, 362-367.	0.8	2
190	Synthesis, optical and electrochemical properties of new thieno [2,3-b] indole-based dyes. Arkivoc, 2018, 2018, 11-19.	0.5	2
191	7-(2-Ethoxyphenyl)dihydroazolopyrimidines in oxidation reactions with bromine. Chemistry of Heterocyclic Compounds, 2018, 54, 892-901.	1,2	2
192	4-Hydroxyproline Containing Podands: New Chiral Catalysts of the Asymmetric Biginelli Reaction. Proceedings (mdpi), 2018, 2, 12.	0.2	2
193	Synthesis and Tuberculostatic Activity of 2-Alkyl-5-Aryltetrazoles. Pharmaceutical Chemistry Journal, 2018, 52, 304-307.	0.8	2
194	Synthesis of 2-Substituted 6-(Polyfluoromethyl)pyrimidine-4-carbaldehyde Acetals. Russian Journal of Organic Chemistry, 2019, 55, 879-882.	0.8	2
195	Synthesis of 5-Methyl-1,2,4-triazolo[1,5-a]pyrimidin-7(4H)-one in Supercritical Carbon Dioxide. Russian Journal of General Chemistry, 2019, 89, 151-152.	0.8	2
196	Synthesis and Antibacterial and Antifungal Activity of 3-(Azol-1-Yl)-6-R-1,2,4,5-Tetrazines. Pharmaceutical Chemistry Journal, 2020, 53, 899-904.	0.8	2
197	Synthesis of 6H,7H-chromeno [$3\hat{a}\in^2$, $4\hat{a}\in^2$:4,5]thieno [3,2-b]indol-6-ones using the Fischer indolization reaction. Tetrahedron Letters, 2021, 79, 153297.	1.4	2
198	Synthesis, photophysical and redox properties of the 2,5,7-tri(het)aryl-[1,2,4]triazolo[1,5-a]pyrimidines. Arkivoc, 2020, 2020, 330-343.	0.5	2

#	Article	IF	Citations
199	An Approach to the Construction of Benzofuran-thieno [3,2-b] indole-Cored N,O,S-Heteroacenes Using Fischer Indolization. ACS Omega, 2021, 6, 32277-32284.	3.5	2
200	Synthesis of novel $[1,2,4]$ triazolo $[1,5-\langle i\rangle b\langle i\rangle][1,2,4,5]$ tetrazines and investigation of their fungistatic activity. Beilstein Journal of Organic Chemistry, 2022, 18, 243-250.	2.2	2
201	Photoinduced transformations in single crystals of 1,2-bis(2-[(E)-3-oxo-3-phenylprop-1-enyl]phenoxy)ethane and 1,5-bis(2-[(E)-3-oxo-3-phenylprop-1-enyl]phenoxy)-3-oxapentane. Russian Chemical Bulletin, 2009, 58, 2288-2298.	1.5	1
202	Multi-Component Reactions in Supramolecular Chemistry and Material Science. Advances in Experimental Medicine and Biology, 2011, , 173-201.	1.6	1
203	Reactions of 5-(het)aryl-1-ethyl-2(1H)-pyrazinones with terminal arylacetylenes promoted by microwave radiation. Chemistry of Heterocyclic Compounds, 2011, 47, 710-718.	1.2	1
204	Synthesis of isobornylphenol-containing 3-aryl-1,2,4-triazin-5(4H)-ones. Russian Chemical Bulletin, 2011, 60, 914-918.	1.5	1
205	ÏfH-Adducts of 1-alkyl-1,4-diazinium salts as the sources of biradicals in the synthesis of tetraazaphenanthrenes. Russian Chemical Bulletin, 2011, 60, 975-980.	1.5	1
206	Synthesis of crownophane with the bicyclo[2.2.2]octane core. Russian Chemical Bulletin, 2011, 60, 1022-1024.	1.5	1
207	Terminal bis-acetylenes derived from 1,2-bis(1H-tetrazol-5-yl)ethane. Russian Chemical Bulletin, 2016, 65, 1268-1271.	1.5	1
208	Synthesis of 5-methyl-1,2,4-triazolo[1,5-a]pyrimidin-7(4H)-one - a semi-product of the synthesis of antiviral drug triazide \hat{A}^{\otimes} in the conditions of microwave excitation. AIP Conference Proceedings, 2019, , .	0.4	1
209	(E)-2-(Hydroxystyryl)-3-phenylquinazolin-4(3H)-ones: synthesis, photochemical and luminescent properties. Arkivoc, 2019, 2018, 266-277.	0.5	1
210	Synthesis and Physicochemical and Catalytic Properties of Composites in the SiO2–ZrO2 System. Inorganic Materials, 2020, 56, 430-436.	0.8	1
211	Convenient Synthesis of Building-Blocks for Pyridine/Piperidine-Decorated Crown Ethers. Macroheterocycles, 2014, 7, 18-22.	0.5	1
212	Dihydroazolopyrimidine θ_i rownophanes. Synthesis and Tuberculostatic Activity. Macroheterocycles, 2016, 9, 301-306.	0.5	1
213	TiO ₂ paste for DSSC photoanode: preparation and optimization of application method. Chimica Techno Acta, 2020, 7, 140-149.	0.7	1
214	Modification of Macrocyclic Compounds by Azaheterocycles. ChemInform, 2004, 35, no.	0.0	0
215	Synthesis, crystal structures, and properties of 5-(het)aryl-3-cyano-1-ethyl-2(1H)-pyrazinones. Russian Chemical Bulletin, 2011, 60, 906-913.	1.5	0
216	An improved protocol for the preparation of 5,11-dialkyl-6,12-di(hetero)aryl-5,11-dihydroindolo[3,2-b]carbazoles and synthesis of their new 2,8-dicyano- / 2,8-bis(benzo[d]thiazol-2-yl)-substituted derivatives. Arkivoc, 2018, 2018, 203-220.	0.5	0

#	Article	IF	CITATIONS
217	Reaction of 1,5-Bis(polyfluoroalkyl)-1,3,5-triketones with Amidines. Russian Journal of Organic Chemistry, 2019, 55, 894-896.	0.8	0
218	Pericyclic reactions in the synthesis of new 5-aryl-5,6-dihydroquinolino[2,1-b]quinazolin-12-ones. Mendeleev Communications, 2019, 29, 135-137.	1.6	0
219	Novel Ultra-Sensitive Electrochemical Sensor Based on Screen-Printed Electrode Modified by 1,3-/1,4-Diazines for the Detection of Nitrobenzene in Solutions and Commercial Honey Samples. SSRN Electronic Journal, 0, , .	0.4	0
220	Pyrimidine-based dyes embedded in porous silicon microcavities for detection of nitroaromatic compounds. , $2019, \ldots$		0
221	The convenient UPLS method for the determination of Ceftiofur in blood plasma. AIP Conference Proceedings, 2020, , .	0.4	0
222	Comparison of methods of synthesis of 5-methyl-1,2,4-triazolo $[1,5-a]$ pyrimidin-7(4H)-one in supercritical carbon dioxide. AIP Conference Proceedings, 2020, , .	0.4	0