
Tomasz Kupiec

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9704877/publications.pdf Version: 2024-02-01

TOMASZ KUDIEC

#	Article	IF	CITATIONS
1	Confirmation of Paternity despite Three Genetic Incompatibilities at Chromosome 2. Genes, 2021, 12, 62.	1.0	3
2	Recommendations of the Polish Speaking Working Group of the International Society for Forensic Genetics on forensic Y chromosome typing. Archiwum Medycyny Sadowej I Kryminologii, 2020, 70, 1-18.	0.3	2
3	Evaluation of the performance of the beta version of the ForenSeq DNA signature Prep Kit on the MiSeq FGx forensic genomics system. Forensic Science International: Genetics Supplement Series, 2019, 7, 585-586.	0.1	3
4	Y chromosome sequence variation of common forensic STR markers and their flanking regions among Polish population. Forensic Science International: Genetics Supplement Series, 2019, 7, 557-560.	0.1	1
5	Dual amplification strategy for improved efficiency of forensic DNA analysis using NGM Detectâ"¢, NGMâ"¢ or Globalfilerâ"¢ kits. Forensic Science International: Genetics, 2018, 35, 46-49.	1.6	8
6	Recommendations of the Polish Speaking Working Group of the International Society for Forensic Genetics for forensic mitochondrial DNA testing. Archiwum Medycyny Sadowej I Kryminologii, 2018, 68, 242-258.	0.3	1
7	A case study of an unknown mass grave — Hostages killed 70 years ago by a Nazi firing squad identified thanks to genetics. Forensic Science International, 2017, 278, 173-176.	1.3	12
8	Genetic Identification of Communist Crimes' Victims (1944–1956) Based on the Analysis of One of Many Mass Graves Discovered on the Powazki Military Cemetery in Warsaw, Poland. Journal of Forensic Sciences, 2016, 61, 1450-1455.	0.9	14
9	Simultaneous Whole Mitochondrial Genome Sequencing with Short Overlapping Amplicons Suitable for Degraded DNA Using the Ion Torrent Personal Genome Machine. Human Mutation, 2015, 36, 1236-1247.	1.1	51
10	Development of a forensically useful age prediction method based on DNA methylation analysis. Forensic Science International: Genetics, 2015, 17, 173-179.	1.6	236
11	Practical aspects of genetic identification of hallucinogenic and other poisonous mushrooms for clinical and forensic purposes. Croatian Medical Journal, 2015, 56, 32-40.	0.2	7
12	Examination of DNA methylation status of the ELOVL2 marker may be useful for human age prediction in forensic science. Forensic Science International: Genetics, 2015, 14, 161-167.	1.6	163
13	A new dimension of the forensic DNA expertise – the need for training experts and expertise recipients. Archiwum Medycyny Sadowej I Kryminologii, 2014, 3, 175-194.	0.3	4
14	Collaborative EDNAP exercise on the IrisPlex system for DNA-based prediction of human eye colour. Forensic Science International: Genetics, 2014, 11, 241-251.	1.6	23
15	Bona fide colour: DNA prediction of human eye and hair colour from ancient and contemporary skeletal remains. Investigative Genetics, 2013, 4, 3.	3.3	58
16	A cautionary note on switching mitochondrial DNA reference sequences in forensic genetics. Forensic Science International: Genetics, 2012, 6, e182-e184.	1.6	24
17	Prediction of Eye Color from Genetic Data Using Bayesian Approach*. Journal of Forensic Sciences, 2012, 57, 880-886.	0.9	30
18	Gene–gene interactions contribute to eye colour variation in humans. Journal of Human Genetics, 2011, 56, 447-455.	1.1	57

TOMASZ KUPIEC

#	Article	IF	CITATIONS
19	Model-based prediction of human hair color using DNA variants. Human Genetics, 2011, 129, 443-454.	1.8	151
20	Genetic examination of the putative skull of Jan Kochanowski reveals its female sex. Croatian Medical Journal, 2011, 52, 403-409.	0.2	5
21	Genetic variation of 15 autosomal STR loci in a population sample from Poland. Legal Medicine, 2010, 12, 246-248.	0.6	16
22	Genetic identification of putative remains of the famous astronomer Nicolaus Copernicus. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12279-12282.	3.3	46
23	A population data for 17 Y-chromosome STR loci in South Poland population sample—Some DYS458.2 variants uncovered and sequenced. Forensic Science International: Genetics, 2009, 4, e43-e44.	1.6	16
24	Association of the SLC45A2 gene with physiological human hair colour variation. Journal of Human Genetics, 2008, 53, 966-971.	1.1	60
25	Association of Polymorphic Sites in the <i>OCA2</i> Gene with Eye Colour Using the Tree Scanning Method. Annals of Human Genetics, 2008, 72, 184-192.	0.3	29
26	Examples of combining genetic evidence—Bayesian network approach. Forensic Science International: Genetics Supplement Series, 2008, 1, 669-670.	0.1	1
27	The OCA2 gene as a marker for eye colour prediction. Forensic Science International: Genetics Supplement Series, 2008, 1, 536-537.	0.1	2
28	Application of BioRobot M48 to forensic DNA extraction. Forensic Science International: Genetics Supplement Series, 2008, 1, 58-59.	0.1	3
29	Determination of Phenotype Associated SNPs in the MC1R Gene. Journal of Forensic Sciences, 2007, 52, 349-354.	0.9	64
30	A search for genes modulated by interleukin-6 alone or with interleukin-1β in HepG2 cells using differential display analysis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2006, 1762, 319-328.	1.8	15
31	Determination of forensically relevant SNPs in the MC1R gene. International Congress Series, 2006, 1288, 816-818.	0.2	1
32	Distribution of mtDNA Haplogroups in a Population Sample from Poland. Journal of Forensic Sciences, 2005, 50, 1-2.	0.9	5
33	The EDNAP mitochondrial DNA population database (EMPOP) collaborative exercises: organisation, results and perspectives. Forensic Science International, 2004, 139, 215-226.	1.3	105
34	Beyond HV1 and HV2—identification of valuable mitochondrial DNA single nucleotide polymorphisms. International Congress Series, 2004, 1261, 100-102.	0.2	0
35	Validation of <i>Cytochrome b</i> Sequence Analysis as a Method of Species Identification. Journal of Forensic Sciences, 2003, 48, 1-5.	0.9	101
36	Homogeneity and distinctiveness of Polish paternal lineages revealed by Y chromosome microsatellite haplotype analysis. Human Genetics, 2002, 110, 592-600.	1.8	91

#	Article	IF	CITATIONS
37	STR data for SGM Plus and penta E and D loci in a population sample from south Poland. Forensic Science International, 2002, 127, 237-239.	1.3	8
38	STR data for AmpF/STR Profiler Plus loci in south Poland. Forensic Science International, 2001, 122, 173-174.	1.3	3