JeongWeon Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/970390/publications.pdf

Version: 2024-02-01

471509 361022 1,332 54 17 35 citations h-index g-index papers 55 55 55 1987 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	High-efficiency electroluminescence and amplified spontaneous emission from a thermally activated delayed fluorescent near-infrared emitter. Nature Photonics, 2018, 12, 98-104.	31.4	421
2	Near-Infrared Electroluminescence and Low Threshold Amplified Spontaneous Emission above 800 nm from a Thermally Activated Delayed Fluorescent Emitter. Chemistry of Materials, 2018, 30, 6702-6710.	6.7	119
3	Boron difluoride hemicurcuminoid as an efficient far red to near-infrared emitter: toward OLEDs and laser dyes. Chemical Communications, 2017, 53, 7003-7006.	4.1	86
4	Broadband Cavityâ€Mode Lasing from Dyeâ€Doped Nematic Liquid Crystals Sandwiched by Broadband Cholesteric Liquid Crystal Bragg Reflectors. Advanced Materials, 2010, 22, 2680-2684.	21.0	58
5	Photophysical, amplified spontaneous emission and charge transport properties of oligofluorene derivatives in thin films. Physical Chemistry Chemical Physics, 2014, 16, 16941-16956.	2.8	48
6	Borondifluoride complexes of hemicurcuminoids as bio-inspired push–pull dyes for bioimaging. Organic and Biomolecular Chemistry, 2016, 14, 1311-1324.	2.8	40
7	Terahertz imaging with metamaterials for biological applications. Sensors and Actuators B: Chemical, 2022, 352, 130993.	7.8	36
8	Strong Nonlinear Optical Response in the Visible Spectral Range with Epsilonâ€Nearâ€Zero Organic Thin Films. Advanced Optical Materials, 2018, 6, 1701400.	7.3	34
9	Charge-transfer dynamics and nonlocal dielectric permittivity tuned with metamaterial structures as solvent analogues. Nature Materials, 2017, 16, 722-729.	27.5	33
10	Tuning the Direction of Intramolecular Charge Transfer and the Nature of the Fluorescent State in a T-Shaped Molecular Dyad. Journal of Physical Chemistry A, 2015, 119, 6283-6295.	2.5	29
11	Ïfâ€Conjugation and Hâ€Bondâ€Directed Supramolecular Selfâ€Assembly: Key Features for Efficient Longâ€Lived Room Temperature Phosphorescent Organic Molecular Crystals. Angewandte Chemie - International Edition, 2021, 60, 2446-2454.	13.8	29
12	Blue-Shifting Intramolecular Charge Transfer Emission by Nonlocal Effect of Hyperbolic Metamaterials. Nano Letters, 2018, 18, 1476-1482.	9.1	27
13	Charge carrier mobility study of a mesogenic thienothiophene derivative in bulk and thin films. Organic Electronics, 2014, 15, 943-953.	2.6	24
14	Enhanced organic solar cells efficiency through electronic and electro-optic effects resulting from charge transfers in polymer hole transport blends. Journal of Materials Chemistry A, 2016, 4, 4252-4263.	10.3	24
15	Solvent-free fluidic organic dye lasers. Optics Express, 2013, 21, 11368.	3.4	23
16	Terahertz optical characteristics of two types of metamaterials for molecule sensing. Optics Express, 2019, 27, 19042.	3.4	22
17	Organic Monolithic Natural Hyperbolic Material. ACS Photonics, 2019, 6, 1681-1689.	6.6	20
18	Realizing Nearâ€Infrared Laser Dyes through a Shift inÂExcitedâ€State Absorption. Advanced Optical Materials, 2021, 9, 2001947.	7.3	19

#	Article	IF	CITATIONS
19	Color-Tunable Low-Threshold Amplified Spontaneous Emission from Yellow to Near-Infrared (NIR) Based on Donor–Spacer–Acceptor–Spacer–Donor Linear Dyes. , 2020, 2, 1567-1574.		18
20	Structure–charge transfer property relationship in self-assembled discotic liquid-crystalline donor–acceptor dyad and triad thin films. RSC Advances, 2016, 6, 57811-57819.	3.6	17
21	Self-Assembled Silica Photonic Crystal as a Liquid-Crystal Alignment Layer and its Electro-optic Applications in Fabry-Perot Cavity Structures. Advanced Materials, 2004, 16, 1725-1729.	21.0	15
22	Electro-optic switching in phase-discontinuity complementary metasurface twisted nematic cell. Optics Express, 2014, 22, 20816.	3.4	14
23	A solvent-free and vacuum-free melt-processing method to fabricate organic semiconducting layers with large crystal size for organic electronic applications. Journal of Materials Chemistry C, 2019, 7, 3190-3198.	5.5	13
24	Anisotropic change in THz resonance of planar metamaterials by liquid crystal and carbon nanotube. Optics Express, 2012, 20, 15440.	3.4	12
25	Fabrication of polarization-dependent reflective metamaterial by focused ion beam milling. Nanotechnology, 2013, 24, 015306.	2.6	12
26	Continuous Spatial Tuning of Laser Emissions in a Full Visible Spectral Range. International Journal of Molecular Sciences, 2011, 12, 2007-2018.	4.1	10
27	Electro-optic switching in metamaterial by liquid crystal. Nano Convergence, 2015, 2, 23.	12.1	10
28	Double Fano resonances in a composite metamaterial possessing tripod plasmonic resonances. Journal of Optics (United Kingdom), 2015, 17, 025103.	2.2	10
29	Donor–Acceptor Distance-Dependent Charge Transfer Dynamics Controlled by Metamaterial Structures. ACS Photonics, 2019, 6, 2649-2654.	6.6	10
30	Reflection resonance switching in metamaterial twisted nematics cell. Optics Express, 2013, 21, 17492.	3.4	9
31	Ïfâ€Conjugation and Hâ€Bondâ€Directed Supramolecular Selfâ€Assembly: Key Features for Efficient Longâ€Lived Room Temperature Phosphorescent Organic Molecular Crystals. Angewandte Chemie, 2021, 133, 2476-2484.	2.0	9
32	Control of optical spin Hall shift in phase-discontinuity metasurface by weak value measurement post-selection. Scientific Reports, 2015, 5, 13900.	3.3	8
33	Electro-optic Kerr effect in the isotropic phase above the columnar phase of a urea derivative. Physical Review E, 2007, 75, 050701.	2.1	7
34	Temporally Stable and Continuously Tunable Laser Device Fabricated Using Polymerized Cholesteric Liquid Crystals. Japanese Journal of Applied Physics, 2012, 51, 082702.	1.5	7
35	Anionic Living Polymerization of Monomers with Photo-Electronic Properties for Control of Polymeric Nano Architectures. Molecular Crystals and Liquid Crystals, 2000, 349, 9-14.	0.3	6
36	Ethynylene-analogues of hemicurcuminoids: Synthesis and ground- and excited properties of their boron difluoride complexes. Dyes and Pigments, 2017, 141, 38-47.	3.7	6

#	Article	IF	CITATIONS
37	Spatiotemporal path discontinuities of wavepackets propagating across a meta-atom. Scientific Reports, 2015, 4, 4634.	3.3	5
38	Timeâ€Resolved Pump–Probe Measurement of Optical Rotatory Dispersion in Chiral Metamaterial. Advanced Optical Materials, 2017, 5, 1700141.	7.3	5
39	Natural Hyperbolic Dispersion with Anisotropic Epsilonâ€Nearâ€Zero and Epsilonâ€Nearâ€Pole in Squaraine Molecular Film. Advanced Optical Materials, 2021, 9, 2101091.	7.3	5
40	Optical spin-dependent beam separation in cyclic group symmetric metasurface. Nanophotonics, 2020, 9, 3459-3471.	6.0	5
41	Effect of the electron donating group on the excited-state electronic nature and epsilon-near-zero properties of curcuminoid-borondifluoride dyes. RSC Advances, 2021, 11, 38247-38257.	3.6	5
42	Optical Properties of Laser Lines and Fluorescent Spectrum in Cholesteric Liquid Crystal Laser. Journal of Nanoscience and Nanotechnology, 2015, 15, 7632-7639.	0.9	4
43	Electro-optic response of an electrostatically self-assembled single polymeric monolayer in attenuated total reflection configuration. Optics Communications, 2004, 240, 29-38.	2.1	3
44	Pulse-laser electroholography by use of interference fringe patterns captured by a CCD. Applied Optics, 2004, 43, 5600.	2.1	3
45	Temporally Stable and Continuously Tunable Laser Device Fabricated Using Polymerized Cholesteric Liquid Crystals. Japanese Journal of Applied Physics, 2012, 51, 082702.	1.5	3
46	Temporal, Thermal, and Light Stability of Continuously Tunable Cholesteric Liquid Crystal Laser Array. Journal of Nanoscience and Nanotechnology, 2014, 14, 8288-8295.	0.9	3
47	Strong Light Confinement in Metal-Coated Si Nanopillars: Interplay of Plasmonic Effects and Geometric Resonance. Nanoscale Research Letters, 2017, 12, 151.	5.7	2
48	Rigidity Dependence of Alignment and Relaxation in Main-Chain Nonlinear Optical Polymers Measured by Optical and Electrical Method. Molecular Crystals and Liquid Crystals, 2000, 349, 99-102.	0.3	1
49	Bandgap of a three-dimensional dyed polystyrene photonic crystal from optical absorption. Journal of the Optical Society of America B: Optical Physics, 2006, 23, 958.	2.1	1
50	Fabrication of nano woodpile structure. , 2006, 6352, 163.		1
51	Picosecond nonlinear optical transmission measurement in SiO ₂ /TiO ₂ one-dimensional photonic crystals., 2006, 6352, 839.		0
52	Nano Woodpile Structure via Two Photon Absorption Polymerization., 2007,,.		0
53	Editorial on special issue "Metamaterials and Plasmonics in Asia― Nanophotonics, 2020, 9, 3045-3047.	6.0	0
54	Editorial on special issue: "Metamaterials and plasmonics in Asiaâ€. Nanophotonics, 2022, 11, 1655-1658.	6.0	0