
Wiebke Lohstroh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9703297/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Altered thermodynamic and kinetic properties of MgH2 infiltrated in microporous scaffold. Chemical Communications, 2010, 46, 8353.	4.1	183
2	Thermal decomposition of Mg(BH4)2 under He flow and H2 pressure. Journal of Materials Chemistry, 2008, 18, 2611.	6.7	103
3	Diborane Release from LiBH ₄ /Silica-Gel Mixtures and the Effect of Additives. Journal of Physical Chemistry C, 2007, 111, 14026-14029.	3.1	97
4	Microscopic Dynamics of Polyethylene Glycol Chains Interacting with Silica Nanoparticles. Physical Review Letters, 2013, 110, 178001.	7.8	91
5	The instrument suite of the European Spallation Source. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 957, 163402.	1.6	90
6	Thermodynamic Effects in Nanoscale NaAlH ₄ . ChemPhysChem, 2010, 11, 789-792.	2.1	88
7	LiBH ₄ â^'Mg(BH ₄) ₂ : A Physical Mixture of Metal Borohydrides as Hydrogen Storage Material. Journal of Physical Chemistry C, 2011, 115, 6095-6101.	3.1	82
8	Structural and optical properties ofMg2NiHxswitchable mirrors upon hydrogen loading. Physical Review B, 2004, 70, .	3.2	79
9	Self-Organized Layered Hydrogenation in BlackMg2NiHxSwitchable Mirrors. Physical Review Letters, 2004, 93, 197404.	7.8	69
10	Synthesis of amorphous Mg(BH4)2 from MgB2 and H2 at room temperature. Journal of Alloys and Compounds, 2010, 508, 212-215.	5.5	66
11	Intriguing differences in hydrogen adsorption in CPO-27 materials induced by metal substitution. Journal of Materials Chemistry A, 2015, 3, 4827-4839.	10.3	61
12	From Molecular Dehydration to Excess Volumes of Phase-Separating PNIPAM Solutions. Journal of Physical Chemistry B, 2014, 118, 4253-4260.	2.6	55
13	Structure and Thermodynamic Properties of the NaMgH ₃ Perovskite: A Comprehensive Study. Chemistry of Materials, 2011, 23, 2317-2326.	6.7	54
14	Pressure Effect on the 2NaH + MgB ₂ Hydrogen Absorption Reaction. Journal of Physical Chemistry C, 2010, 114, 21816-21823.	3.1	53
15	Metal (boro-) hydrides for high energy density storage and relevant emerging technologies. International Journal of Hydrogen Energy, 2020, 45, 33687-33730.	7.1	53
16	Rate limiting steps of the phase transformations in Ti-dopedNaAlH4investigated by isotope exchange. Physical Review B, 2007, 75, .	3.2	52
17	Reaction steps in the Li–Mg–N–H hydrogen storage system. Journal of Alloys and Compounds, 2007, 446-447, 332-335.	5.5	45
18	Mg–Ni–H films as selective coatings: Tunable reflectance by layered hydrogenation. Applied Physics Letters, 2004, 84, 3651-3653.	3.3	42

#	ARTICLE	IF	CITATIONS
19	Extension of the LOPLS-AA Force Field for Alcohols, Esters, and Monoolein Bilayers and its Validation by Neutron Scattering Experiments. Journal of Physical Chemistry B, 2015, 119, 15287-15299.	2.6	42
20	TOFTOF: Cold neutron time-of-flight spectrometer. Journal of Large-scale Research Facilities JLSRF, 0, 1, A15.	0.0	42
21	Study of the hydride forming process of in-situ grown MgH2 thin films by activated reactive evaporation. Thin Solid Films, 2008, 516, 4351-4359.	1.8	40
22	Investigating the Gas Sorption Mechanism in an <i>rht</i> -Metal–Organic Framework through Computational Studies. Journal of Physical Chemistry C, 2014, 118, 439-456.	3.1	40
23	Solvent Dynamics in Solutions of PNIPAM in Water/Methanol Mixtures—A Quasi-Elastic Neutron Scattering Study. Journal of Physical Chemistry B, 2016, 120, 4679-4688.	2.6	38
24	Dynamics of porous and amorphous magnesium borohydride to understand solid state Mg-ion-conductors. Scientific Reports, 2020, 10, 9080.	3.3	38
25	Ti-catalyzed Mg(AlH4)2: A reversible hydrogen storage material. Journal of Alloys and Compounds, 2005, 404-406, 775-778.	5.5	36
26	Influence of the Chemical Potential on the Hydrogen Sorption Kinetics of Mg2Ni/TM/Pd (TM =) Tj ETQq0 0 0 rgB1	- /Qverlock	10 Tf 50 46
27	Temperature dependence of magnetoresistance and Hall effect inMg2NiHxfilms. Physical Review B, 2004, 69, .	3.2	32
28	Stabilized switchable "black state―in Mg2NiH4â^•Tiâ^•Pd thin films for optical hydrogen sensing. Applied Physics Letters, 2006, 89, 021913.	3.3	32
29	Combinatorial method for the development of a catalyst promoting hydrogen uptake. Journal of Alloys and Compounds, 2005, 404-406, 699-705.	5.5	31
30	Optical, structural, and electrical properties of Mg2NiH4 thin films in situ grown by activated reactive evaporation. Journal of Applied Physics, 2006, 100, 063518.	2.5	29
31	Hydrogenation Reaction Pathway in Li ₂ Mg(NH) ₂ . Journal of Physical Chemistry C, 2009, 113, 15772-15777.	3.1	28
32	A high rotational barrier for physisorbed hydrogen in an fcu-metal–organic framework. Chemical Communications, 2014, 50, 14109-14112.	4.1	28
33	A new phase in the decomposition of Mg(BH4)2: first-principles simulated annealing. Journal of Materials Chemistry, 2009, 19, 7081.	6.7	27
34	Dramatic effect of pore size reduction on the dynamics of hydrogen adsorbed in metal–organic materials. Journal of Materials Chemistry A, 2014, 2, 13884.	10.3	27
35	Wide-Line Solid-State NMR Characterizations of Sodium Alanates. Journal of Physical Chemistry C, 2009, 113, 15467-15472.	3.1	25

36Experimental evidence of librational vibrations determining the stability of calcium borohydride.3.22436Physical Review B, 2011, 83, .3.23.23.2

#	Article	IF	CITATIONS
37	The growth-induced microstructural origin of the optical black state of Mg2NiHx thin films. Journal of Alloys and Compounds, 2006, 416, 2-10.	5.5	21
38	Hydrogen diffusion in bulk and nanocrystalline palladium: A quasielastic neutron scattering study. Physical Review B, 2016, 94, .	3.2	21
39	Strong Adverse Contribution of Conformational Dynamics to Streptavidin–Biotin Binding. Journal of Physical Chemistry B, 2020, 124, 324-335.	2.6	21
40	The dielectric function of Mgy NiHx thin films (). Journal of Alloys and Compounds, 2007, 430, 13-18.	5.5	20
41	Homogeneous and heterogeneous dynamics in native and denatured bovine serum albumin. Physical Chemistry Chemical Physics, 2018, 20, 5128-5139.	2.8	20
42	Double layer formation in Mg–TM switchable mirrors (TM: Ni, Co, Fe). Journal of Alloys and Compounds, 2005, 404-406, 490-493.	5.5	18
43	Magnesium Imide: Synthesis and Structure Determination of an Unconventional Alkaline Earth Imide from Decomposition of Magnesium Amide. Inorganic Chemistry, 2011, 50, 1116-1122.	4.0	18
44	Water Dynamics in a Concentrated Poly(<i>N</i> -isopropylacrylamide) Solution at Variable Pressure. Macromolecules, 2019, 52, 1942-1954.	4.8	18
45	Imprinting magnetic structures. Applied Physics Letters, 1998, 72, 2894-2896.	3.3	17
46	Structure of the Mg2Ni switchable mirror: an EXAFS investigation. Materials Chemistry and Physics, 2005, 91, 1-9.	4.0	17
47	Photoactivation Reduces Side-Chain Dynamics of a LOV Photoreceptor. Biophysical Journal, 2016, 110, 1064-1074.	0.5	17
48	Alzheimer's peptide amyloid-β, fragment 22–40, perturbs lipid dynamics. Soft Matter, 2016, 12, 1444-1451.	2.7	17
49	Anomalies in the low frequency vibrational density of states for a polymer with intrinsic microporosity – the Boson peak of PIM-1. Physical Chemistry Chemical Physics, 2018, 20, 1355-1363.	2.8	17
50	Structure and Dynamics of Borohydrides Studied by Neutron Scattering Techniques: A Review. Journal of the Physical Society of Japan, 2020, 89, 051011.	1.6	17
51	Comparison of the Calculated and Experimental Scenarios for Solid-State Reactions Involving Ca(AlH ₄) ₂ . Journal of Physical Chemistry C, 2008, 112, 131-138.	3.1	16
52	Influence of Solvent on Poly(2-(Dimethylamino)Ethyl Methacrylate) Dynamics in Polymer-Concentrated Mixtures: A Combined Neutron Scattering, Dielectric Spectroscopy, and Calorimetric Study. Macromolecules, 2015, 48, 6724-6735.	4.8	16
53	Dynamic processes in biological membrane mimics revealed by quasielastic neutron scattering. Chemistry and Physics of Lipids, 2017, 206, 28-42.	3.2	16
54	Hydrogen release and structural transformations in LiNH2–MgH2 systems. Journal of Alloys and Compounds, 2011, 509, S719-S723.	5.5	15

#	Article	IF	CITATIONS
55	Solution Structure and Conformational Flexibility in the Active State of the Orange Carotenoid Protein. Part II: Quasielastic Neutron Scattering. Journal of Physical Chemistry B, 2019, 123, 9536-9545.	2.6	15
56	A quasielastic and inelastic neutron scattering study of the alkaline and alkaline-earth borohydrides LiBH ₄ and Mg(BH ₄) ₂ and the mixture LiBH ₄ + Mg(BH ₄) ₂ . Physical Chemistry Chemical Physics, 2019, 21, 718-728.	2.8	15
57	In-situ neutron diffraction study of magnesium amide/lithium hydride stoichiometric mixtures with lithium hydride excess. International Journal of Hydrogen Energy, 2010, 35, 5448-5453.	7.1	13
58	Effect of NaH/MgB2 ratio on the hydrogen absorption kinetics of the system NaHÂ+ÂMgB2. International Journal of Hydrogen Energy, 2014, 39, 5030-5036.	7.1	12
59	Hydrogen dynamics in β-Mg(BH4)2 on the picosecond timescale. Physical Chemistry Chemical Physics, 2016, 18, 14323-14332.	2.8	12
60	In-Situ Deposition of Alkali and Alkaline Earth Hydride Thin Films To Investigate the Formation of Reactive Hydride Composites. Journal of Physical Chemistry C, 2010, 114, 13895-13901.	3.1	11
61	Applying Polymer Blend Dynamics Concepts to a Simplified Industrial System. A Combined Effort by Dielectric Spectroscopy and Neutron Scattering. Macromolecules, 2018, 51, 6692-6706.	4.8	11
62	Effect of a Ti-Based Additive on the Desorption in Isotope-Labeled LiB(H,D) ₄ –Mg(H,D) ₂ Nanocomposites. Journal of Physical Chemistry C, 2012, 116, 11877-11885.	3.1	10
63	Molecular Mobility of a Polymer of Intrinsic Microporosity Revealed by Quasielastic Neutron Scattering. Macromolecules, 2020, 53, 6731-6739.	4.8	10
64	Impact of Sulfur on the melt dynamics of glass forming Ti75Ni25â^' <i>x</i> S <i>x</i> . Applied Physics Letters, 2020, 117, .	3.3	10
65	Complex molecular dynamics of a symmetric model discotic liquid crystal revealed by broadband dielectric, thermal and neutron spectroscopy. Soft Matter, 2020, 16, 2005-2016.	2.7	9
66	Critical composition dependence of the hydrogenation of Mg2Â \pm δNi thin films. Journal of Alloys and Compounds, 2007, 428, 34-39.	5.5	8
67	Magnetocaloric effect in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Fe</mml:mi><mml:m mathvariant="normal">P</mml:m </mml:msub></mml:mrow> : Magnetic and phonon degrees of freedom. Physical Review B. 2019, 99</mml:math 	n>23.2	l:mgn>
68	Investigation of Molecular Dynamics of a PTB7:PCBM Polymer Blend with Quasi-Elastic Neutron Scattering. ACS Applied Polymer Materials, 2020, 2, 3797-3804.	4.4	8
69	Structural and magnetic properties of La/Fe multilayers. Applied Physics A: Materials Science and Processing, 1996, 63, 183-190.	2.3	7
70	Hydrogen-controlled interlayer exchange coupling in Fe/LaHx multilayers. Journal of Magnetism and Magnetic Materials, 2001, 237, 77-89.	2.3	7
71	Microstructural origin of the optical black state in Mg2NiHx thin films. Journal of Alloys and Compounds, 2005, 404-406, 481-484.	5.5	7
72	Neutron spectroscopy study of the diffusivity of hydrogen in MoS ₂ . Physical Chemistry Chemical Physics, 2021, 23, 7961-7973.	2.8	7

#	Article	IF	CITATIONS
73	Diffusivelike Motions in a Solvent-Free Protein-Polymer Hybrid. Physical Review Letters, 2021, 126, 088102.	7.8	7
74	Pressure Dependence of Water Dynamics in Concentrated Aqueous Poly(<i>N</i> -isopropylacrylamide) Solutions with a Methanol Cosolvent. Macromolecules, 2021, 54, 4387-4400.	4.8	7
75	CSPEC: The cold chopper spectrometer of the ESS, a detailed overview prior to commissioning. Review of Scientific Instruments, 2021, 92, 105104.	1.3	7
76	Thermochromic metal-hydride bilayer devices. Journal of Alloys and Compounds, 2005, 404-406, 465-468.	5.5	6
77	Imprinting artificial magnetic structures (invited). Journal of Applied Physics, 1999, 85, 5873-5876.	2.5	5
78	Imprinted spiral structures as neutron polarizers. Physica B: Condensed Matter, 1999, 267-268, 352-354.	2.7	5
79	Hydrogen Storage Materials. Neutron Scattering Applications and Techniques, 2015, , 205-239.	0.2	5
80	The fragile magnetic structures of Fe/CeH2â^'δ multilayers. Journal of Magnetism and Magnetic Materials, 2000, 210, 357-365.	2.3	4
81	Dynamics of tetrahydrofuran as minority component in a mixture with poly(2-(dimethylamino)ethyl) Tj ETQq1 1 Physics, 2015, 143, 094505.	0.784314 3.0	rgBT /Overloc 4
82	Magnetic spiral structures in La/Fe multilayers. Journal of Magnetism and Magnetic Materials, 1999, 198-199, 440-442.	2.3	3
83	The Influence of the Blend Ratio, Solvent Additive, and Post-production Treatment on the Polymer Dynamics in PTB7:PCBM Blend Films. Macromolecules, 2021, 54, 6534-6542.	4.8	3
84	High-pressure cell for in situ neutron studies of hydrogen storage materials. Journal of Neutron Research, 2020, 21, 125-135.	1.1	2
85	High Hydrogen Mobility in an Amide–Borohydride Compound Studied by Quasielastic Neutron Scattering. Advanced Engineering Materials, 2021, 23, 2100620.	3.5	1
86	Quasielastic neutron scattering study on proton dynamics assisted by water and ammonia molecules confined in MIL-53. Structural Dynamics, 2021, 8, 054501.	2.3	1