
Fernando Henrique Cincotto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/970099/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	(Bio)Sensing Materials: Quantum Dots. , 2023, , 389-400.		5
2	Electrochemical Methods Applied for Bioanalysis: Differential Pulse Voltammetry and Square Wave Voltammetry. , 2022, , 273-282.		1
3	A New Electrochemical Sensor Based on Carbon Black Modified With Palladium Nanoparticles for Direct Determination of 17αâ€Ethinylestradiol in Real Samples. Electroanalysis, 2022, 34, 863-871.	1.5	5
4	Biochar Generated from Agro-Industry Sugarcane Residue by Low Temperature Pyrolysis Utilized as an Adsorption Agent for the Removal of Thiamethoxam Pesticide in Wastewater. Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	24
5	A new electrochemical platform based on low cost nanomaterials for sensitive detection of the amoxicillin antibiotic in different matrices. Talanta, 2020, 206, 120252.	2.9	92
6	Non-enzymatic electrochemical determination of creatinine using a novel screen-printed microcell. Talanta, 2020, 207, 120277.	2.9	35
7	A new electrochemical sensor based on eco-friendly chemistry for the simultaneous determination of toxic trace elements. Microchemical Journal, 2020, 158, 105292.	2.3	14
8	Methods for design and fabrication of nanosensors: the case of ZnO-based nanosensor. , 2020, , 9-30.		9
9	Square-wave adsorptive anodic stripping voltammetric determination of norfloxacin using a glassy carbon electrode modified with carbon black and CdTe quantum dots in a chitosan film. Mikrochimica Acta, 2019, 186, 148.	2.5	33
10	A new disposable microfluidic electrochemical paper-based device for the simultaneous determination of clinical biomarkers. Talanta, 2019, 195, 62-68.	2.9	70
11	Bismuth vanadate/graphene quantum dot: A new nanocomposite for photoelectrochemical determination of dopamine. Sensors and Actuators B: Chemical, 2019, 285, 248-253.	4.0	45
12	A nano-magnetic electrochemical sensor for the determination of mood disorder related substances. RSC Advances, 2018, 8, 14040-14047.	1.7	28
13	Bismuth Vanadate/Reduced Graphene Oxide Nanocomposite Electrode for Photoelectrochemical Determination of Diclofenac in Urine. Electroanalysis, 2018, 30, 2704-2711.	1.5	11
14	Decoration of reduced graphene oxide with rhodium nanoparticles for the design of a sensitive electrochemical enzyme biosensor for 17β-estradiol. Biosensors and Bioelectronics, 2017, 89, 343-351.	5.3	72
15	Electrochemical Sensorâ€Based Ruthenium Nanoparticles on Reduced Graphene Oxide for the Simultaneous Determination of Ethinylestradiol and Amoxicillin. Electroanalysis, 2017, 29, 1278-1285.	1.5	34
16	Spectroelectrochemical study of acetylsalicylic acid in neutral medium and its quantification in clinical and environmental samples. Electrochimica Acta, 2017, 233, 105-112.	2.6	10
17	Magnetite Nanoparticles Bonded Carbon Quantum Dots Magnetically Confined onto Screen Printed Carbon Electrodes and their Performance as Electrochemical Sensor for NADH. Electroanalysis, 2017, 29, 1968-1975.	1.5	29
18	Methylparaben quantification via electrochemical sensor based on reduced graphene oxide decorated with ruthenium nanoparticles. Sensors and Actuators B: Chemical, 2017, 251, 739-745.	4.0	28

Fernando Henrique

#	ARTICLE	IF	CITATIONS
19	Electrochemical sensor based on reduced graphene oxide modified with palladium nanoparticles for determination of desipramine in urine samples. Sensors and Actuators B: Chemical, 2017, 239, 488-493.	4.0	38
20	High performance electrochemical sensors for dopamine and epinephrine using nanocrystalline carbon quantum dots obtained under controlled chronoamperometric conditions. Electrochimica Acta, 2016, 209, 464-470.	2.6	95
21	Efficient electrochemical biosensors for ethynylestradiol based on the laccase enzyme supported on single walled carbon nanotubes decorated with nanocrystalline carbon quantum dots. Analytical Methods, 2016, 8, 7254-7259.	1.3	23
22	Immobilization of ruthenium phthalocyanine on silica-coated multi-wall partially oriented carbon nanotubes: Electrochemical detection of fenitrothion pesticide. Materials Research Bulletin, 2016, 76, 41-47.	2.7	56
23	Sensitive determination of the endocrine disruptor bisphenol A at ultrathin film based on nanostructured hybrid material SiO2/GO/AgNP. Journal of Solid State Electrochemistry, 2016, 20, 2503-2507.	1.2	26
24	Electrochemical immunosensor for ethinylestradiol using diazonium salt grafting onto silver nanoparticles-silica–graphene oxide hybrids. Talanta, 2016, 147, 328-334.	2.9	32
25	Reduced graphene oxide-Sb2O5 hybrid nanomaterial for the design of a laccase-based amperometric biosensor for estriol. Electrochimica Acta, 2015, 174, 332-339.	2.6	54
26	A synergistic combination of reduced graphene oxide and antimony nanoparticles for estriol hormone detection. Sensors and Actuators B: Chemical, 2015, 210, 453-459.	4.0	51
27	Highly Sensitive Electrochemical Sensor for Determination of Vitamin D in Mixtures of Waterâ€Ethanol. Electroanalysis, 2014, 26, 2783-2788.	1.5	26
28	Graphene Nanosheets and Quantum Dots: A Smart Material for Electrochemical Applications. Chemistry - A European Journal, 2014, 20, 4746-4753.	1.7	19
29	Synthesis and characterization of α-nickel (II) hydroxide particles on organic-inorganic matrix and its application in a sensitive electrochemical sensor for vitamin D determination. Electrochimica Acta, 2014, 147, 688-695.	2.6	38
30	Simultaneous determination of epinephrine and dopamine by electrochemical reduction on the hybrid material SiO ₂ /graphene oxide decorated with Ag nanoparticles. Analyst, The, 2014, 139, 4634.	1.7	70
31	Electrochemical investigation of the dimeric oxo-bridged ruthenium complex in aqueous solution and its incorporation within a cation-exchange polymeric film on the electrode surface for electrocatalytic activity of hydrogen peroxide oxidation. Electrochimica Acta, 2011, 56, 6804-6811.	2.6	24
32	Contamination of roadside soils by metals linked to catalytic converters in Rio De Janeiro, Brazil. Environmental Forensics, 0, , 1-13.	1.3	1