Yuji Nakada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9700582/publications.pdf Version: 2024-02-01

Υπη Νακάρα

#	Article	lF	CITATIONS
1	Single Nucleus Transcriptomics: Apical Resection in Newborn Pigs Extends the Time Window of Cardiomyocyte Proliferation and Myocardial Regeneration. Circulation, 2022, 145, 1744-1747.	1.6	11
2	Changes in Cardiomyocyte Cell Cycle and Hypertrophic Growth During Fetal to Adult in Mammals. Journal of the American Heart Association, 2021, 10, e017839.	3.7	26
3	Identification of tetracycline combinations as EphB1 tyrosine kinase inhibitors for treatment of neuropathic pain. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	9
4	Cyclin D2 Overexpression Enhances the Efficacy of Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes for Myocardial Repair in a Swine Model of Myocardial Infarction. Circulation, 2021, 144, 210-228.	1.6	61
5	TT-10–loaded nanoparticles promote cardiomyocyte proliferation and cardiac repair in a mouse model of myocardial infarction. JCI Insight, 2021, 6, .	5.0	8
6	Experimental Hypoxia as a Model for Cardiac Regeneration in Mice. Methods in Molecular Biology, 2021, 2158, 337-344.	0.9	1
7	Mitochondrial substrate utilization regulates cardiomyocyte cell-cycle progression. Nature Metabolism, 2020, 2, 167-178.	11.9	131
8	Mechanism of Eccentric Cardiomyocyte Hypertrophy Secondary to Severe Mitral Regurgitation. Circulation, 2020, 141, 1787-1799.	1.6	10
9	Mitochondrial Substrate Utilization Regulates Cardiomyocyte Cell Cycle Progression. Nature Metabolism, 2020, 2, 167-178.	11.9	49
10	Hypoxia-induced myocardial regeneration. Journal of Applied Physiology, 2017, 123, 1676-1681.	2.5	32
11	Hypoxia promotes primitive glycosaminoglycan-rich extracellular matrix composition in developing heart valves. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H1143-H1154.	3.2	16
12	Hypoxia induces heart regeneration in adult mice. Nature, 2017, 541, 222-227.	27.8	566
13	Visualization and Lineage Tracing of Pax7+ Spermatogonial Stem Cells in the Mouse. Methods in Molecular Biology, 2017, 1463, 139-154.	0.9	2
14	Regulation of FOXO3 subcellular localization by Kit ligand in the neonatal mouse ovary. Journal of Assisted Reproduction and Genetics, 2015, 32, 1741-1747.	2.5	14
15	The LKB1 Tumor Suppressor as a Biomarker in Mouse and Human Tissues. PLoS ONE, 2013, 8, e73449.	2.5	14
16	Distinct domains within Mash1 and Math1 are required for function in neuronal differentiation versus neuronal cell-type specification. Development (Cambridge), 2004, 131, 1319-1330.	2.5	95
17	Separable enhancer sequences regulate the expression of the neural bHLH transcription factor neurogenin 1. Developmental Biology, 2004, 271, 479-487.	2.0	40
18	Cardiomyocyte Cell-Cycle Regulation in Neonatal Large Mammals: Single Nucleus RNA-Sequencing Data Analysis via an Artificial-Intelligence–Based Pipeline. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	5