Josephine Herz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9699150/publications.pdf

Version: 2024-02-01

43 2,929 25
papers citations h-index

43 43 43 4630 all docs docs citations times ranked citing authors

43

g-index

#	Article	IF	Citations
1	Extracellular Vesicles Improve Post-Stroke Neuroregeneration and Prevent Postischemic Immunosuppression. Stem Cells Translational Medicine, 2015, 4, 1131-1143.	1.6	584
2	In Vivo Imaging of Partially Reversible Th17 Cell-Induced Neuronal Dysfunction in the Course of Encephalomyelitis. Immunity, 2010, 33, 424-436.	6.6	291
3	Mesenchymal stem cell-derived extracellular vesicles ameliorate inflammation-induced preterm brain injury. Brain, Behavior, and Immunity, 2017, 60, 220-232.	2.0	218
4	Very-late-antigen-4 (VLA-4)-mediated brain invasion by neutrophils leads to interactions with microglia, increased ischemic injury and impaired behavior in experimental stroke. Acta Neuropathologica, 2015, 129, 259-277.	3.9	210
5	Role of Neutrophils in Exacerbation of Brain Injury After Focal Cerebral Ischemia in Hyperlipidemic Mice. Stroke, 2015, 46, 2916-2925.	1.0	166
6	Activation of kinin receptor B1 limits encephalitogenic T lymphocyte recruitment to the central nervous system. Nature Medicine, 2009, 15, 788-793.	15.2	118
7	Expanding Two-Photon Intravital Microscopy to the Infrared by Means of Optical Parametric Oscillator. Biophysical Journal, 2010, 98, 715-723.	0.2	96
8	Cytotoxic CD8 ⁺ T Cell–Neuron Interactions: Perforin-Dependent Electrical Silencing Precedes But Is Not Causally Linked to Neuronal Cell Death. Journal of Neuroscience, 2009, 29, 15397-15409.	1.7	78
9	Differential immune cell dynamics in the CNS cause CD4+ T cell compartmentalization. Brain, 2009, 132, 1247-1258.	3.7	78
10	Tracking CNS and systemic sources of oxidative stress during the course of chronic neuroinflammation. Acta Neuropathologica, 2015, 130, 799-814.	3.9	76
11	Transduction of Neural Precursor Cells with TAT-Heat Shock Protein 70 Chaperone: Therapeutic Potential Against Ischemic Stroke after Intrastriatal and Systemic Transplantation. Stem Cells, 2012, 30, 1297-1310.	1.4	72
12	Fingolimod protects against neonatal white matter damage and long-term cognitive deficits caused by hyperoxia. Brain, Behavior, and Immunity, 2016, 52, 106-119.	2.0	69
13	The novel proteasome inhibitor BSc2118 protects against cerebral ischaemia through HIF1A accumulation and enhanced angioneurogenesis. Brain, 2012, 135, 3282-3297.	3.7	65
14	Interaction between hypothermia and delayed mesenchymal stem cell therapy in neonatal hypoxic-ischemic brain injury. Brain, Behavior, and Immunity, 2018, 70, 118-130.	2.0	65
15	Parallelized TCSPC for Dynamic Intravital Fluorescence Lifetime Imaging: Quantifying Neuronal Dysfunction in Neuroinflammation. PLoS ONE, 2013, 8, e60100.	1.1	63
16	Intracerebroventricularly delivered VEGF promotes contralesional corticorubral plasticity after focal cerebral ischemia via mechanisms involving anti-inflammatory actions. Neurobiology of Disease, 2012, 45, 1077-1085.	2.1	56
17	Early Pro-inflammatory Microglia Activation After Inflammation-Sensitized Hypoxic-Ischemic Brain Injury in Neonatal Rats. Frontiers in Cellular Neuroscience, 2019, 13, 237.	1.8	56
18	Endogenous hypothermic response to hypoxia reduces brain injury: Implications for modeling hypoxic-ischemic encephalopathy and therapeutic hypothermia in neonatal mice. Experimental Neurology, 2016, 283, 264-275.	2.0	51

#	Article	IF	CITATIONS
19	Peripheral T Cell Depletion by FTY720 Exacerbates Hypoxic-Ischemic Brain Injury in Neonatal Mice. Frontiers in Immunology, 2018, 9, 1696.	2.2	47
20	Exacerbation of ischemic brain injury in hypercholesterolemic mice is associated with pronounced changes in peripheral and cerebral immune responses. Neurobiology of Disease, 2014, 62, 456-468.	2.1	46
21	New Insights into Adaptive Immunity in Chronic Neuroinflammation. Advances in Immunology, 2007, 96, 1-40.	1.1	42
22	Mesenchymal Stromal Cell-Derived Extracellular Vesicles Reduce Neuroinflammation, Promote Neural Cell Proliferation and Improve Oligodendrocyte Maturation in Neonatal Hypoxic-Ischemic Brain Injury. Frontiers in Cellular Neuroscience, 2020, 14, 601176.	1.8	36
23	Involvement of CXCL1/CXCR2 During Microglia Activation Following Inflammation-Sensitized Hypoxic-Ischemic Brain Injury in Neonatal Rats. Frontiers in Neurology, 2020, 11, 540878.	1.1	34
24	Erythropoietin Restores Long-Term Neurocognitive Function Involving Mechanisms of Neuronal Plasticity in a Model of Hyperoxia-Induced Preterm Brain Injury. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-13.	1.9	29
25	Geranylgeranylation but Not GTP Loading Determines Rho Migratory Function in T Cells. Journal of Immunology, 2007, 179, 6024-6032.	0.4	27
26	The Role of CD8+ T Cells and Their Local Interaction with CD4+ T Cells in Myelin Oligodendrocyte Glycoprotein35–55–Induced Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2013, 191, 4960-4968.	0.4	24
27	Neutrophil dynamics, plasticity and function in acute neurodegeneration following neonatal hypoxia–ischemia. Brain, Behavior, and Immunity, 2021, 92, 232-242.	2.0	21
28	Regulatory T Cells Contribute to Sexual Dimorphism in Neonatal Hypoxic-Ischemic Brain Injury. Stroke, 2022, 53, 381-390.	1.0	20
29	Zbtb20 Regulates Developmental Neurogenesis in the Olfactory Bulb and Gliogenesis After Adult Brain Injury. Molecular Neurobiology, 2019, 56, 567-582.	1.9	19
30	Peripheral immune cells and perinatal brain injury: a double-edged sword? Pediatric Research, 2022, 91, 392-403.	1.1	19
31	Dendritic cells tip the balance towards induction of regulatory T cells upon priming in experimental autoimmune encephalomyelitis. Journal of Autoimmunity, 2017, 76, 108-114.	3.0	18
32	Visualization of macroscopic cerebral vessel anatomyâ€"A new and reliable technique in mice. Journal of Neuroscience Methods, 2012, 204, 249-253.	1.3	16
33	Sildenafil Enhances Quantity of Immature Neurons and Promotes Functional Recovery in the Developing Ischemic Mouse Brain. Developmental Neuroscience, 2017, 39, 287-297.	1.0	15
34	Perinatal Hyperoxia and Developmental Consequences on the Lung-Brain Axis. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-17.	1.9	15
35	Repetitive Erythropoietin Treatment Improves Long-Term Neurocognitive Outcome by Attenuating Hyperoxia-Induced Hypomyelination in the Developing Brain. Frontiers in Neurology, 2020, 11, 804.	1.1	14
36	Protection of Oligodendrocytes Through Neuronal Overexpression of the Small GTPase Ras in Hyperoxia-Induced Neonatal Brain Injury. Frontiers in Neurology, 2018, 9, 175.	1.1	12

#	Article	IF	CITATIONS
37	Hypothermia modulates myeloid cell polarization in neonatal hypoxic–ischemic brain injury. Journal of Neuroinflammation, 2021, 18, 266.	3.1	12
38	Modulation of Dendritic Cell Immunobiology via Inhibition of 3-Hydroxy-3-Methylglutaryl-CoA (HMG-CoA) Reductase. PLoS ONE, 2014, 9, e100871.	1.1	11
39	Detrimental Impact of Energy Drink Compounds on Developing Oligodendrocytes and Neurons. Cells, 2019, 8, 1381.	1.8	11
40	Adverse neuropsychiatric development following perinatal brain injury: from a preclinical perspective. Pediatric Research, 2019, 85, 198-215.	1.1	11
41	Effects of Poly(ADP-Ribose) Polymerase-1 Inhibition in a Neonatal Rodent Model of Hypoxic-Ischemic Injury. BioMed Research International, 2017, 2017, 1-11.	0.9	10
42	Inhibition of Acetylcholinesterase Modulates NMDA Receptor Antagonist Mediated Alterations in the Developing Brain. International Journal of Molecular Sciences, 2014, 15, 3784-3798.	1.8	4
43	White Matter Brain Development after Exposure to Circulating Cell-Free Hemoglobin and Hyperoxia in a Rat Pup Model. Developmental Neuroscience, 2019, 41, 234-246.	1.0	4