
Joannes D Maasakkers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9698915/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessment of methane emissions from the U.S. oil and gas supply chain. Science, 2018, 361, 186-188.	6.0	519
2	Satellite observations of atmospheric methane and their value for quantifying methane emissions. Atmospheric Chemistry and Physics, 2016, 16, 14371-14396.	1.9	230
3	Gridded National Inventory of U.S. Methane Emissions. Environmental Science & Technology, 2016, 50, 13123-13133.	4.6	165
4	Quantifying methane emissions from the largest oil-producing basin in the United States from space. Science Advances, 2020, 6, eaaz5120.	4.7	155
5	Global distribution of methane emissions, emission trends, and OH concentrations and trends inferred from an inversion of GOSAT satellite data for 2010–2015. Atmospheric Chemistry and Physics, 2019, 19, 7859-7881.	1.9	111
6	Satellite observations reveal extreme methane leakage from a natural gas well blowout. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26376-26381.	3.3	107
7	Attribution of the accelerating increase in atmospheric methane during 2010–2018 by inverse analysis of GOSAT observations. Atmospheric Chemistry and Physics, 2021, 21, 3643-3666.	1.9	68
8	Satellite-based survey of extreme methane emissions in the Permian basin. Science Advances, 2021, 7, .	4.7	66
9	A global gridded (0.1° × 0.1°) inventory of methane emissions from oil, gas, and coal exploitation ba on national reports to the United Nations Framework Convention on Climate Change. Earth System Science Data, 2020, 12, 563-575.	sed 3.7	60
10	Global methane budget and trend, 2010–2017: complementarity of inverse analyses using in situ (GLOBALVIEWplus CH ₄ ObsPack) and satellite (GOSAT) observations. Atmospheric Chemistry and Physics, 2021, 21, 4637-4657.	1.9	55
11	Global distribution of methane emissions: a comparative inverse analysis of observations from the TROPOMI and GOSAT satellite instruments. Atmospheric Chemistry and Physics, 2021, 21, 14159-14175.	1.9	54
12	2010–2015 North American methane emissions, sectoral contributions, and trends: a high-resolution inversion of GOSAT observations of atmospheric methane. Atmospheric Chemistry and Physics, 2021, 21, 4339-4356.	1.9	45
13	Satellites Detect Abatable Super-Emissions in One of the World's Largest Methane Hotspot Regions. Environmental Science & Technology, 2022, 56, 2143-2152.	4.6	40
14	Multisatellite Imaging of a Gas Well Blowout Enables Quantification of Total Methane Emissions. Geophysical Research Letters, 2021, 48, e2020GL090864.	1.5	39
15	Methane Emissions from Superemitting Coal Mines in Australia Quantified Using TROPOMI Satellite Observations. Environmental Science & Technology, 2021, 55, 16573-16580.	4.6	39
16	High-resolution inversion of methane emissions in the Southeast US using SEAC ⁴ RS aircraft observations of atmospheric methane: anthropogenic and wetland sources. Atmospheric Chemistry and Physics, 2018, 18, 6483-6491.	1.9	38
17	2010–2016 methane trends over Canada, the United States, and Mexico observed by the GOSAT satellite: contributions from different source sectors. Atmospheric Chemistry and Physics, 2018, 18, 12257-12267.	1.9	35
18	A high-resolution (0.1ºÂ×Â0.1º) inventory of methane emissions from Canadian and Mexican oil and gas systems. Atmospheric Environment, 2017, 158, 211-215.	1.9	34

JOANNES D MAASAKKERS

#	Article	IF	CITATIONS
19	Monitoring global tropospheric OH concentrations using satellite observations of atmospheric methane. Atmospheric Chemistry and Physics, 2018, 18, 15959-15973.	1.9	34
20	Satellite Constraints on the Latitudinal Distribution and Temperature Sensitivity of Wetland Methane Emissions. AGU Advances, 2021, 2, e2021AV000408.	2.3	31
21	A tale of two regions: methane emissions from oil and gas production in offshore/onshore Mexico. Environmental Research Letters, 2021, 16, 024019.	2.2	30
22	Methane emissions in the United States, Canada, and Mexico: evaluation of national methane emission inventories and 2010–2017 sectoral trends by inverse analysis of in situ (GLOBALVIEWplus) Tj ETQq0 0 0 rgBT	/Overlock 1.9	10 Tf 50 622
23	Atmospheric Chemistry and Physics, 2022, 22, 395-418. The 2019 methane budget and uncertainties at $1\hat{A}^{\circ}$ resolution and each country through Bayesian integration Of GOSAT total column methane data and a priori inventory estimates. Atmospheric Chemistry and Physics, 2022, 22, 6811-6841.	1.9	24
24	Sustained methane emissions from China after 2012 despite declining coal production and rice-cultivated area. Environmental Research Letters, 2021, 16, 104018.	2.2	19
25	Comparative analysis of low-Earth orbit (TROPOMI) and geostationary (GeoCARB, GEO-CAPE) satellite instruments for constraining methane emissions on fine regional scales: application to the Southeast US. Atmospheric Measurement Techniques, 2018, 11, 6379-6388.	1.2	17
26	A Bayesian framework for deriving sector-based methane emissions from top-down fluxes. Communications Earth & Environment, 2021, 2, .	2.6	12
27	Estimating 2010–2015 anthropogenic and natural methane emissions in Canada using ECCC surface and GOSAT satellite observations. Atmospheric Chemistry and Physics, 2021, 21, 18101-18121.	1.9	11
28	Reduced-cost construction of Jacobian matrices for high-resolution inversions of satellite observations of atmospheric composition. Atmospheric Measurement Techniques, 2021, 14, 5521-5534.	1.2	5
29	A high-resolution gridded inventory of coal mine methane emissions for India and Australia. Elementa, 2022, 10, .	1.1	5