
Shuo-Hui Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9698459/publications.pdf Version: 2024-02-01

СИЛО-НИ САО

#	Article	IF	CITATIONS
1	Surface Plasmon–Coupled Emission: What Can Directional Fluorescence Bring to the Analytical Sciences?. Annual Review of Analytical Chemistry, 2012, 5, 317-336.	5.4	128
2	Label-Free Aptasensor Based on Ultrathin-Linker-Mediated Hot-Spot Assembly To Induce Strong Directional Fluorescence. Journal of the American Chemical Society, 2014, 136, 6802-6805.	13.7	60
3	Electric Field Assisted Surface Plasmon-Coupled Directional Emission: An Active Strategy on Enhancing Sensitivity for DNA Sensing and Efficient Discrimination of Single Base Mutation. Journal of the American Chemical Society, 2011, 133, 1787-1789.	13.7	47
4	Surface charge modulated aptasensor in a single glass conical nanopore. Biosensors and Bioelectronics, 2015, 71, 37-43.	10.1	47
5	Graphene oxide-assisted surface plasmon coupled emission for amplified fluorescence immunoassay. Sensors and Actuators B: Chemical, 2017, 253, 804-808.	7.8	35
6	The synergistic enhancement of silver nanocubes and graphene oxide on surface plasmon-coupled emission. Talanta, 2019, 195, 752-756.	5.5	34
7	Directional surface plasmon-coupled emission of CdTe quantum dots and its application in Hg(ii) sensing. Analytical Methods, 2012, 4, 3956.	2.7	25
8	Turning on fluorescence by plasmonic assembly with large tunable spacing: a new observation and its biosensing application. Chemical Communications, 2014, 50, 518-520.	4.1	25
9	A Simple Fluorescence Spectroscopic Approach for Simultaneous and Rapid Detection of Four Polycyclic Aromatic Hydrocarbons (PAH4) in Vegetable Oils. Food Analytical Methods, 2016, 9, 3209-3217.	2.6	24
10	NMR spectroelectrochemistry in studies of hydroquinone oxidation by polyaniline thin films. Electrochimica Acta, 2018, 273, 300-306.	5.2	22
11	Plasmon-mediated fluorescence with distance independence: From model to a biosensing application. Biosensors and Bioelectronics, 2014, 58, 258-265.	10.1	21
12	A conformation and charge co-modulated ultrasensitive biomimetic ion channel. Chemical Communications, 2016, 52, 12450-12453.	4.1	20
13	Versatile, Robust, and Facile Approach for in Situ Monitoring Electrocatalytic Processes through Liquid Electrochemical NMR Spectroscopy. Analytical Chemistry, 2019, 91, 1686-1691.	6.5	20
14	Surface plasmon–coupled emission imaging for biological applications. Analytical and Bioanalytical Chemistry, 2020, 412, 6085-6100.	3.7	20
15	In Situ Monitoring Potential-Dependent Electrochemical Process by Liquid NMR Spectroelectrochemical Determination: A Proof-of-Concept Study. Analytical Chemistry, 2017, 89, 3810-3813.	6.5	19
16	In Situ Monitoring of Fluorescent Polymer Brushes by Angle-Scanning Based Surface Plasmon Coupled Emission. ACS Macro Letters, 2019, 8, 223-227.	4.8	18
17	Surface Plasmon Coupled Emission in Micrometer-Scale Cells: A Leap from Interface to Bulk Targets. Journal of Physical Chemistry B, 2015, 119, 2921-2927.	2.6	15
18	Surface Plasmon Coupled Fluorescence-Enhanced Interfacial "Molecular Beacon―To Probe Biorecognition Switching: An Efficient, Versatile, and Facile Signaling Biochip. ACS Applied Bio Materials, 2019, 2, 625-629.	4.6	14

Shuo-Hui Cao

#	Article	IF	CITATIONS
19	Rapid fluorescence spectroscopic screening method for the sensitive detection of thiabendazole in red wine. Analytical Methods, 2014, 6, 7260-7267.	2.7	13
20	Variable-Angle Nanoplasmonic Fluorescence Microscopy: An Axially Resolved Method for Tracking the Endocytic Pathway. Analytical Chemistry, 2019, 91, 13658-13664.	6.5	13
21	A novel <i>in situ</i> electrochemical NMR cell with a palisade gold film electrode. AIP Advances, 2017, 7, .	1.3	12
22	High performance dual-mode surface plasmon coupled emission imaging apparatus integrating Kretschmann and reverse Kretschmann configurations for flexible measurements. Review of Scientific Instruments, 2016, 87, 013705.	1.3	10
23	The electrochemical oxidation of hydroquinone and catechol through polyaniline and poly(aspartic) Tj ETQq1 \therefore	1 0.784314 1.3	rgBT /Overlo
24	Label-Free Fluorescent Nanofilm Sensor Based on Surface Plasmon Coupled Emission: In Situ Monitoring the Growth of Metal–Organic Frameworks. Analytical Chemistry, 2022, 94, 6430-6435.	6.5	10
25	Modulation of surface plasmon coupled emission (SPCE) by a pulsed magnetic field. Chemical Communications, 2015, 51, 12320-12323.	4.1	9
26	Excitation–Emission Synchronization-Mediated Directional Fluorescence: Insight into Plasmon-Coupled Emission at Vibrational Resolution. Journal of Physical Chemistry Letters, 2020, 11, 2701-2707.	4.6	8
27	NMR Spectroelectrochemistry in Studies of Dopamine Oxidation. Electrochemistry, 2020, 88, 200-204.	1.4	8
28	Optical modulator based on propagating surface plasmon coupled fluorescent thin film: proof-of-concept studies. Methods and Applications in Fluorescence, 2017, 5, 024006.	2.3	7
29	A label-free and ultrasensitive DNA impedimetric sensor with enzymatic and electrical dual-amplification. Analyst, The, 2019, 144, 4175-4179.	3.5	6
30	Metallic Nanofilm Enhanced Fluorescence Cell Imaging: A Study of Distance-Dependent Intensity and Lifetime by Optical Sectioning Microscopy. Journal of Physical Chemistry B, 2020, 124, 2760-2768.	2.6	6
31	Strong fluorescence emission localized at a tapered silver-plated sub-wavelength pore. New Journal of Chemistry, 2015, 39, 77-80.	2.8	4
32	Reversing current rectification to improve DNAâ€sensing sensitivity in conical nanopores. Electrophoresis, 2019, 40, 2098-2103.	2.4	4
33	Plasmon Coupling Enhanced Microâ€Spectroscopy and Imaging for Sensitive Discrimination of Membrane Domains of a Single Cell. Chemistry - A European Journal, 2021, 27, 17331-17335.	3.3	3
34	Influence of Sample Thickness on Surface Plasmon Coupled Emission (SPCE) over a Large Range in Water. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800373.	1.8	2
35	In Situ Real-Time Quantitative Determination in Electrochemical Nuclear Magnetic Resonance Spectroscopy. Sensors, 2022, 22, 282.	3.8	2
36	Boosting C3-alcohol electrooxidations by co-fueling with formic acid: A real-time quantitative nuclear magnetic resonance spectroelectrochemical study. Journal of Catalysis, 2021, 404, 551-559.	6.2	1

#	Article	IF	CITATIONS
37	Polarization―and Angleâ€Dependent Plasmonic Synchronous Fluorescence Spectroscopy to Probe Molecular Vibrational Couplings on an Aluminum Nanoâ€Film. Advanced Optical Materials, 0, , 2101973.	7.3	1