
Terry S Elton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9697703/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Use of CRISPR/Cas9 with homology-directed repair to silence the human topoisomerase IIα intron-19 5' splice site: Generation of etoposide resistance in human leukemia K562 cells. PLoS ONE, 2022, 17, e0265794.	2.5	3
2	Intronic Polyadenylation in Acquired Cancer Drug Resistance Circumvented by Utilizing CRISPR/Cas9 with Homology-Directed Repair: The Tale of Human DNA Topoisomerase IIα. Cancers, 2022, 14, 3148.	3.7	2
3	CRISPR/Cas9 Genome Editing of the Human Topoisomerase II <i>α</i> Intron 19 5′ Splice Site Circumvents Etoposide Resistance in Human Leukemia K562 Cells. Molecular Pharmacology, 2021, 99, 226-241.	2.3	9
4	hsa-miR-9-3p and hsa-miR-9-5p as Post-Transcriptional Modulators of DNA Topoisomerase II <i>α</i> in Human Leukemia K562 Cells with Acquired Resistance to Etoposide. Molecular Pharmacology, 2020, 97, 159-170.	2.3	12
5	Effects of DNA topoisomerase llÎ \pm splice variants on acquired drug resistance. , 2020, 3, 161-170.		7
6	Alternative RNA Processing as a Determinant of Acquired Resistance to the Anticancer Drug Etoposide in Human Leukemia K562 Cells. FASEB Journal, 2019, 33, 675.3.	0.5	0
7	The Novel C-terminal Truncated 90-kDa Isoform of Topoisomerase II <i>α</i> (TOP2 <i>α</i> /90) Is a Determinant of Etoposide Resistance in K562 Leukemia Cells via Heterodimerization with the TOP2 <i>1±</i> /170 Isoform. Molecular Pharmacology, 2018, 93, 515-525.	2.3	11
8	Alternative RNA Processing of Topoisomerase II <i>α</i> in Etoposide-Resistant Human Leukemia K562 Cells: Intron Retention Results in a Novel C-Terminal Truncated 90-kDa Isoform. Journal of Pharmacology and Experimental Therapeutics, 2017, 360, 152-163.	2.5	16
9	Experimental procedures to identify and validate specific mRNA targets of miRNAs. EXCLI Journal, 2015, 14, 758-90.	0.7	20
10	Regulation of the MIR155 host gene in physiological and pathological processes. Gene, 2013, 532, 1-12.	2.2	405
11	miR-802 regulates human angiotensin II type 1 receptor expression in intestinal epithelial C2BBe1 cells. American Journal of Physiology - Renal Physiology, 2010, 299, G632-G642.	3.4	29
12	Trisomy-21 gene dosage over-expression of miRNAs results in the haploinsufficiency of specific target proteins. RNA Biology, 2010, 7, 540-547.	3.1	74
13	Experimental validation of miRNA targets. Methods, 2008, 44, 47-54.	3.8	315