Janos Magyar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9697157/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of SEA0400 and KB-R7943 on Na+/Ca2+ exchange current and L-type Ca2+ current in canine ventricular cardiomyocytes. Naunyn-Schmiedeberg's Archives of Pharmacology, 2005, 372, 63-70.	1.4	97
2	Effects of terpenoid phenol derivatives on calcium current in canine and human ventricular cardiomyocytes. European Journal of Pharmacology, 2004, 487, 29-36.	1.7	58
3	Contribution of ion currents to beat-to-beat variability of action potential duration in canine ventricular myocytes. Pflugers Archiv European Journal of Physiology, 2015, 467, 1431-1443.	1.3	40
4	Effects of thymol on calcium and potassium currents in canine and human ventricular cardiomyocytes. British Journal of Pharmacology, 2002, 136, 330-338.	2.7	39
5	Late Sodium Current Inhibitors as Potential Antiarrhythmic Agents. Frontiers in Pharmacology, 2020, 11, 413.	1.6	38
6	Frequency-dependent effects of omecamtiv mecarbil on cell shortening of isolated canine ventricular cardiomyocytes. Naunyn-Schmiedeberg's Archives of Pharmacology, 2017, 390, 1239-1246.	1.4	33
7	Differential effects of fluoxetine enantiomers in mammalian neural and cardiac tissues. International Journal of Molecular Medicine, 2003, 11, 535-42.	1.8	31
8	Electrophysiological effects of risperidone in mammalian cardiac cells. Naunyn-Schmiedeberg's Archives of Pharmacology, 2002, 366, 350-356.	1.4	28
9	Sarcolemmal Ca 2+ -entry through L-type Ca 2+ channels controls the profile of Ca 2+ -activated Cl â^' current in canine ventricular myocytes. Journal of Molecular and Cellular Cardiology, 2016, 97, 125-139.	0.9	20
10	Late sodium current in human, canine and guinea pig ventricular myocardium. Journal of Molecular and Cellular Cardiology, 2020, 139, 14-23.	0.9	20
11	Transient receptor potential melastatin 4 channel inhibitor 9-phenanthrol inhibits K ⁺ but not Ca ²⁺ currents in canine ventricular myocytes. Canadian Journal of Physiology and Pharmacology, 2018, 96, 1022-1029.	0.7	19
12	Beat-to-beat variability of cardiac action potential duration: underlying mechanism and clinical implications. Canadian Journal of Physiology and Pharmacology, 2017, 95, 1230-1235.	0.7	18
13	Ca2+-activated Clâ^' current is antiarrhythmic by reducing both spatial and temporal heterogeneity of cardiac repolarization. Journal of Molecular and Cellular Cardiology, 2017, 109, 27-37.	0.9	18
14	L-364,373 fails to activate the slow delayed rectifier K+ current in canine ventricular cardiomyocytes. Naunyn-Schmiedeberg's Archives of Pharmacology, 2006, 373, 85-90.	1.4	17
15	Different effects of endothelin-1 on calcium and potassium currents in canine ventricular cells. Naunyn-Schmiedeberg's Archives of Pharmacology, 2001, 363, 383-390.	1.4	16
16	â€~X' marks the spot! Sedimentological, geochemical and palaeontological investigations of Upper Cretaceous (Maastrichtian) vertebrate fossil localities from the Vălioara valley (Densuğ-Ciula) Tj ETQq0 0 0 rgl	BT ØØverlo	ck 140 Tf 50 I

17	Cytosolic calcium changes affect the incidence of early afterdepolarizations in canine ventricular myocytes. Canadian Journal of Physiology and Pharmacology, 2015, 93, 527-534.	0.7	13
18	Electrophysiological effects of EGIS-7229, a new antiarrhythmic agent, in isolated mammalian and human cardiac tissues. Naunyn-Schmiedeberg's Archives of Pharmacology, 1997, 355, 398-405.	1.4	11

JANOS MAGYAR

#	Article	IF	CITATIONS
19	lon current profiles in canine ventricular myocytes obtained by the "onion peeling―technique. Journal of Molecular and Cellular Cardiology, 2021, 158, 153-162.	0.9	11
20	Effects of norfluoxetine on the action potential and transmembrane ion currents in canine ventricular cardiomyocytes. Naunyn-Schmiedeberg's Archives of Pharmacology, 2004, 370, 203-10.	1.4	8
21	Mexiletine-like cellular electrophysiological effects of GS967 in canine ventricular myocardium. Scientific Reports, 2021, 11, 9565.	1.6	8
22	Electrophysiological Effects of the Transient Receptor Potential Melastatin 4 Channel Inhibitor (4-Chloro-2-(2-chlorophenoxy)acetamido) Benzoic Acid (CBA) in Canine Left Ventricular Cardiomyocytes. International Journal of Molecular Sciences, 2021, 22, 9499.	1.8	8
23	Oxidative shift in tissue redox potential increases beat-to-beat variability of action potential duration. Canadian Journal of Physiology and Pharmacology, 2015, 93, 563-568.	0.7	7
24	Concept of relative variability of cardiac action potential duration and its test under various experimental conditions. General Physiology and Biophysics, 2016, 35, 55-62.	0.4	7
25	Biphasic effect of bimoclomol on calcium handling in mammalian ventricular myocardium. British Journal of Pharmacology, 2000, 129, 1405-1412.	2.7	6
26	New Strategies for the Treatment of Atrial Fibrillation. Pharmaceuticals, 2021, 14, 926.	1.7	6
27	Pharmacological Modulation and (Patho)Physiological Roles of TRPM4 Channel—Part 2: TRPM4 in Health and Disease. Pharmaceuticals, 2022, 15, 40.	1.7	6
28	Effects of the antiarrhythmic agent EGIS-7229 (S 21407) on calcium and potassium currents in canine ventricular cardiomyocytes. Naunyn-Schmiedeberg's Archives of Pharmacology, 2001, 363, 604-611.	1.4	5
29	Late Na+ Current Is [Ca2+]i-Dependent in Canine Ventricular Myocytes. Pharmaceuticals, 2021, 14, 1142.	1.7	4
30	Pharmacological Modulation and (Patho)Physiological Roles of TRPM4 Channel—Part 1: Modulation of TRPM4. Pharmaceuticals, 2022, 15, 81.	1.7	2
31	Evaluation of muscle-specific and metabolism regulating microRNAs in a chronic swimming rat model. Journal of Muscle Research and Cell Motility, 2022, 43, 21-33.	0.9	1
32	Identification of Divergent Regulatory Mechanisms across the RGK Family of Small GTPases. FASEB Journal, 2013, 27, 598.3.	0.2	0