Janos Magyar

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/9697157/publications.pdf
Version: 2024-02-01

| 32 | citations |
| :---: | :---: | :---: | :---: | :---: |
| papers | |

Effects of terpenoid phenol derivatives on calcium current in canine and human ventricular cardiomyocytes. European Journal of Pharmacology, 2004, 487, 29-36.

Frequency-dependent effects of omecamtiv mecarbil on cell shortening of isolated canine ventricular cardiomyocytes. Naunyn-Schmiedeberg's Archives of Pharmacology, 2017, 390, 1239-1246.
1.4

Differential effects of fluoxetine enantiomers in mammalian neural and cardiac tissues. International
$7 \quad$ Journal of Molecular Medicine, 2003, 11, 535-42.
1.8

31

8 Electrophysiological effects of risperidone in mammalian cardiac cells. Naunyn-Schmiedeberg's Archives of Pharmacology, 2002, 366, 350-356.
1.4

28

Sarcolemmal Ca $2+$-entry through L-type $\mathrm{Ca} 2+$ channels controls the profile of $\mathrm{Ca} 2+$-activated $\mathrm{Cl} \hat{\mathrm{a}}^{\wedge}$
$9 \quad$ current in canine ventricular myocytes. Journal of Molecular and Cellular Cardiology, 2016, 97,
0.9

20
125-139.
10 Late sodium current in human, canine and guinea pig ventricular myocardium. Journal of Molecular and Cellular Cardiology, 2020, 139, 14-23.
0.9

20
Transient receptor potential melastatin 4 channel inhibitor 9-phenanthrol inhibits K <sup $>+</$ sup $>$ but
not $C a<$ sup $>2+</$ sup $>$ currents in canine ventricular myocytes. Canadian Journal of Physiology and
Pharmacology, 2018, 96, 1022-1029.
12 Beat-to-beat variability of cardiac action potential duration: underlying mechanism and clinical implications. Canadian Journal of Physiology and Pharmacology, 2017, 95, 1230-1235.
0.7

18
$\mathrm{Ca} 2+-$ activated Clâ^’ current is antiarrhythmic by reducing both spatial and temporal heterogeneity of cardiac repolarization. Journal of Molecular and Cellular Cardiology, 2017, 109, 27-37.
0.9

18

L-364,373 fails to activate the slow delayed rectifier K+ current in canine ventricular cardiomyocytes.
1.4

17 Naunyn-Schmiedeberg's Archives of Pharmacology, 2006, 373, 85-90.

Different effects of endothelin-1 on calcium and potassium currents in canine ventricular cells.
Naunyn-Schmiedeberg's Archives of Pharmacology, 2001, 363, 383-390.
1.4

16
$\hat{a} €^{\sim} X a ̂ \not €^{T M}$ marks the spot! Sedimentological, geochemical and palaeontological investigations of Upper
Cretaceous (Maastrichtian) vertebrate fossil localities from the VÄflioara valley (DensuÄŸ-Ciula) Tj ETQq0 00 rgBT фCaverlock1140 Tf 501

Cytosolic calcium changes affect the incidence of early afterdepolarizations in canine ventricular
19
Ion current profiles in canine ventricular myocytes obtained by the â€œonion peelingâ€॰technique. Journal of Molecular and Cellular Cardiology, 2021, 158, 153-162.

Effects of norfluoxetine on the action potential and transmembrane ion currents in canine ventricular cardiomyocytes. Naunyn-Schmiedeberg's Archives of Pharmacology, 2004, 370, 203-10.

8

> Mexiletine-like cellular electrophysiological effects of GS967 in canine ventricular myocardium. Scientific Reports, $2021,11,9565$.

Electrophysiological Effects of the Transient Receptor Potential Melastatin 4 Channel Inhibitor
22 (4-Chloro-2-(2-chlorophenoxy) acetamido) Benzoic Acid (CBA) in Canine Left Ventricular
1.8

8 Cardiomyocytes. International Journal of Molecular Sciences, 2021, 22, 9499.

Oxidative shift in tissue redox potential increases beat-to-beat variability of action potential duration.
Canadian Journal of Physiology and Pharmacology, 2015, 93, 563-568.
$0.7 \quad 7$

Concept of relative variability of cardiac action potential duration and its test under various25 Biphasic effect of bimoclomol on calcium handling in mammalian ventricular myocardium. BritishJournal of Pharmacology, 2000, 129, 1405-1412.
2.76

26 New Strategies for the Treatment of Atrial Fibrillation. Pharmaceuticals, 2021, 14, 926.
$1.7 \quad 6$

27	Pharmacological Modulation and (Patho)Physiological Roles of TRPM4 Channelâ€"Part 2: TRPM4 in Health and Disease. Pharmaceuticals, 2022, 15, 40.	1.7	6
28	Effects of the antiarrhythmic agent EGIS-7229 (S 21407) on calcium and potassium currents in canine ventricular cardiomyocytes. Naunyn-Schmiedeberg's Archives of Pharmacology, 2001, 363, 604-611.	1.4	5
29	Late Na+ Current Is [Ca2+]i-Dependent in Canine Ventricular Myocytes. Pharmaceuticals, 2021, 14, 1142.	1.7	4
30	Pharmacological Modulation and (Patho)Physiological Roles of TRPM4 Channelâ $€$ "Part 1: Modulation of TRPM4. Pharmaceuticals, 2022, 15, 81.	1.7	2
31	Evaluation of muscle-specific and metabolism regulating microRNAs in a chronic swimming rat model. Journal of Muscle Research and Cell Motility, 2022, 43, 21-33.	0.9	1

