
Jingsong Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9697147/publications.pdf Version: 2024-02-01

LINCSONG HUANG

#	Article	IF	CITATIONS
1	Systematic strategy for high-performance small molecular hybrid white OLED via blade coating at ambient condition. Organic Electronics, 2022, 100, 106366.	2.6	7
2	Highly Efficient Perovskite Solar Cell Based on PVK Hole Transport Layer. Polymers, 2022, 14, 2249.	4.5	7
3	Toward Electrically Pumped Organic Lasers: A Review and Outlook on Material Developments and Resonator Architectures. Advanced Photonics Research, 2021, 2, 2000155.	3.6	42
4	Phenothiazine-benzimidazole based architecture as an efficient interfacial charge transport layer for perovskite blue light emitting diodes. , 2021, , .		0
5	Universal and versatile morphology engineering via hot fluorous solvent soaking for organic bulk heterojunction. Nature Communications, 2020, 11, 5585.	12.8	29
6	Highly sensitive fluorescence detection system for microfluidic lab-on-a-chip. Lab on A Chip, 2011, 11, 1664.	6.0	77
7	Gravure contact printing of flexible, high-performance polymer light emitting diodes for large-area displays and lighting. Materials Research Society Symposia Proceedings, 2011, 1340, 1.	0.1	1
8	Micron-scale patterning of high conductivity poly(3,4-ethylendioxythiophene):poly(styrenesulfonate) for organic field-effect transistors. Organic Electronics, 2010, 11, 1307-1312.	2.6	33
9	High performance, flexible polymer light-emitting diodes (PLEDs) with gravure contact printed hole injection and light emitting layers. Organic Electronics, 2010, 11, 1088-1095.	2.6	68
10	Rapid Patterning of Singleâ€Wall Carbon Nanotubes by Interlayer Lithography. Small, 2010, 6, 2530-2534.	10.0	18
11	On the use and influence of electron-blocking interlayers in polymer light-emitting diodes. Physical Chemistry Chemical Physics, 2009, 11, 3455.	2.8	21
12	On the pseudo-symmetric current–voltage response of bulk heterojunction solar cells. Journal of Materials Chemistry, 2008, 18, 1644.	6.7	44
13	Breath figure pattern formation as a means to fabricate micro-structured organic light-emitting diodes. Journal of Physics Condensed Matter, 2007, 19, 016203.	1.8	7
14	Patterning of organic devices by interlayer lithography. Journal of Materials Chemistry, 2007, 17, 1043.	6.7	68
15	Efficient flexible polymer light emitting diodes with conducting polymer anodes. Journal of Materials Chemistry, 2007, 17, 3551.	6.7	56
16	A Multilayered Polymer Light-Emitting Diode Using a Nanocrystalline Metal-Oxide Film as a Charge-Injection Electrode. Advanced Materials, 2007, 19, 683-687.	21.0	125
17	High efficiency flexible ITO-free polymer/fullerene photodiodes. Physical Chemistry Chemical Physics, 2006, 8, 3904.	2.8	101
18	Elimination of hole injection barriers by conducting polymer anodes in polyfluorene light-emitting diodes. Physical Review B, 2006, 74, .	3.2	41

JINGSONG HUANG

#	Article	IF	CITATIONS
19	Influence of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) in polymer LEDs. Physical Review B, 2006, 74, .	3.2	30
20	Organic light emitting diodes and photodetectors: Toward applications in lab-on-a-chip portable devices. , 2005, 6036, 406.		8
21	Investigation of the Effects of Doping and Post-Deposition Treatments on the Conductivity, Morphology, and Work Function of Poly(3,4-ethylenedioxythiophene)/Poly(styrene sulfonate) Films. Advanced Functional Materials, 2005, 15, 290-296.	14.9	469
22	Role of electron injection in polyfluorene-based light emitting diodes containing PEDOT:PSS. Physical Review B, 2005, 71, .	3.2	58
23	Highly efficient and low-operating-voltage OLEDs for active and passive matrix displays. , 2004, 5214, 172.		3
24	Doped organic semiconductors: Physics and application in light emitting diodes. Organic Electronics, 2003, 4, 89-103.	2.6	376
25	Influence of the thickness and doping of the emission layer on the performance of organic light-emitting diodes with PiN structure. Journal of Applied Physics, 2003, 93, 838-844.	2.5	44
26	Influence of thermal treatment on the conductivity and morphology of PEDOT/PSS films. Synthetic Metals, 2003, 139, 569-572.	3.9	205
27	33.3: Invited Paper: OLEDs with Doped Transport Layers for Highly Efficient Displays. Digest of Technical Papers SID International Symposium, 2003, 34, 1076.	0.3	1
28	Low-voltage inverted transparent vacuum deposited organic light-emitting diodes using electrical doping. Applied Physics Letters, 2002, 81, 922-924.	3.3	156
29	<title>Ultra-low voltage organic light-emitting diodes based on PiN structures</title> . , 2002, 4642, 97.		Ο
30	Low-voltage organic electroluminescent devices using pin structures. Applied Physics Letters, 2002, 80, 139-141.	3.3	325
31	Effects of alternate doped structures on organic electroluminescent devices. Thin Solid Films, 2002, 408, 206-210.	1.8	6
32	Photoluminescence and electroluminescence of a soluble poly(p-phenylene vinylene) film. Thin Solid Films, 2001, 382, 214-217.	1.8	0
33	Organic low-dimensional structure electroluminescent material characteristics and devices. Optical and Quantum Electronics, 2001, 33, 1163-1171.	3.3	28
34	Title is missing!. Optical and Quantum Electronics, 2001, 33, 165-172.	3.3	9
35	An Organic Quantum-Well Electroluminescent Device with Enhanced Performance. Chinese Physics Letters, 2001, 18, 1658-1659.	3.3	8
36	Low Operating Voltage and High Efficiency Organic Multilayer Electroluminescent Devices with p-Type Doped Hole Injection Layer. Japanese Journal of Applied Physics, 2001, 40, 6630-6633.	1.5	18

JINGSONG HUANG

#	Article	IF	CITATIONS
37	Improvement of organic light-emitting diodes performance by the insertion of a Si3N4 layer. Thin Solid Films, 2000, 363, 25-28.	1.8	66
38	Organic white light electroluminescent devices. Thin Solid Films, 2000, 363, 294-297.	1.8	33
39	Synthesis of poly(2,5-di-n-butoxy-p-phenylene vinylene) and its application in light-emitting diodes. Polymer Engineering and Science, 2000, 40, 1606-1610.	3.1	1
40	Organic single-quantum-well electroluminescent device. Optical and Quantum Electronics, 2000, 32, 117-123.	3.3	0
41	Chromaticity-tunable white light emission from organic multiple-quantum-well structure. Optical and Quantum Electronics, 2000, 32, 1325-1331.	3.3	Ο
42	High-brightness organic double-quantum-well electroluminescent devices. Applied Physics Letters, 2000, 77, 1750.	3.3	46
43	Tuning of chromaticity in organic multiple-quantum well white light emitting devices. Synthetic Metals, 2000, 108, 81-84.	3.9	24
44	Optical and electrical characteristics of organic electroluminescent devices with multiple-quantum-well structure. Journal Physics D: Applied Physics, 1999, 32, 2841-2845.	2.8	6
45	High Efficient Green Emission from Organic Multi-quantum Wells Structure. Chinese Physics Letters, 1999, 16, 149-151.	3.3	17
46	High Brightness and Efficiency Yellow-Emitting Organic Electroluminescent Device. Chinese Physics Letters, 1999, 16, 226-228.	3.3	10
47	Organic electroluminescent devices and their application. European Physical Journal D, 1999, 49, 849-857.	0.4	Ο
48	Highly efficient and bright doped organic electroluminescent diodes using an aluminum electrode. Optical and Quantum Electronics, 1999, 31, 1227-1233.	3.3	1
49	White light emission induced by confinement in organic multiheterostructures. Applied Physics Letters, 1999, 74, 641-643.	3.3	107
50	Efficient white-light-emitting organic/polymeric electroluminescent device. , 1999, , .		0
51	Enhanced Hole Injection and Brightness of Organic Electroluminescent Devices with Indium Tin Oxide Surface Modification Using Oxygen Plasma Treatment. Chinese Physics Letters, 1998, 15, 537-538.	3.3	2
52	Effect of well number on organic multiple-quantum-well electroluminescent device characteristics. Applied Physics Letters, 1998, 73, 3348-3350.	3.3	43
53	Flexible Blue Light Emitting Diodes Made from Dye Doped Poly(N-Vinylcarbazole) with Multilayer Structure. Chinese Physics Letters, 1997, 14, 74-76.	3.3	8
54	<i>I - V</i> Characteristics of Metal/Polynitrobenzene Junctions. Chinese Physics Letters, 1997, 14, 375-378.	3.3	1

JINGSONG HUANG

#	Article	IF	CITATIONS
55	Violet–blue electroluminescent diodes utilizing conjugated polymer blends. Synthetic Metals, 1997, 87, 105-108.	3.9	27
56	<title>Blue emission dye doped polymer-based electroluminescent devices for
display</title> . Proceedings of SPIE, 1996, , .	0.8	0
57	<title>Bright blue electroluminescence from Poly(N-vinylcarbazole) doped with two dyes</title> . , 1996, , .		Ο
58	<title>Blue light-emitting diodes from polymer blends</title> . , 1996, , .		1
59	Influence of the Energy Level Matching on the Performances of Organic/Polymeric Electroluminescent Devices. Chinese Physics Letters, 1996, 13, 790-793.	3.3	12