
Karin Hing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9696262/publications.pdf Version: 2024-02-01

KADIN HINC

#	Article	IF	CITATIONS
1	Photoelectrochemical imaging system with high spatiotemporal resolution for visualizing dynamic cellular responses. Biosensors and Bioelectronics, 2021, 180, 113121.	10.1	23
2	Decellularized porcine xenograft for anterior cruciate ligament reconstruction. Bone and Joint Research, 2020, 9, 293-301.	3.6	11
3	Photoelectrochemical Imaging System for the Mapping of Cell Surface Charges. Analytical Chemistry, 2019, 91, 5896-5903.	6.5	38
4	The effect of increased microporosity on bone formation within silicateâ€substituted scaffolds in an ovine posterolateral spinal fusion model. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105, 805-814.	3.4	6
5	Use of a fluorescent probe to monitor the enhanced affinity of rh-BMP-2 to silicated-calcium phosphate synthetic bone graft substitutes under competitive conditions. Materials Science and Engineering C, 2017, 80, 207-212.	7.3	5
6	The effect of the incorporation of fluoride into strontium containing bioactive glasses. Journal of Non-Crystalline Solids, 2017, 457, 25-30.	3.1	13
7	Efficacy of silicate-substituted calcium phosphate with enhanced strut porosity as a standalone bone graft substitute and autograft extender in an ovine distal femoral critical defect model. Journal of Materials Science: Materials in Medicine, 2016, 27, 20.	3.6	13
8	Strontium substituted bioactive glasses for tissue engineered scaffolds: the importance of octacalcium phosphate. Journal of Materials Science: Materials in Medicine, 2016, 27, 39.	3.6	67
9	Apatite formation of bioactive glasses is enhanced by low additions of fluoride but delayed in the presence of serum proteins. Materials Letters, 2015, 153, 143-147.	2.6	32
10	Influence of cell culture medium composition on <i>in vitro</i> dissolution behavior of a fluorideâ€containing bioactive glass. Journal of Biomedical Materials Research - Part A, 2014, 102, 647-654.	4.0	45
11	Fluoride-containing bioactive glasses and Bioglass® 45S5 form apatite in low pH cell culture medium. Materials Letters, 2014, 119, 96-99.	2.6	28
12	Microstructure and chemistry affects apatite nucleation on calcium phosphate bone graft substitutes. Journal of Materials Science: Materials in Medicine, 2013, 24, 597-610.	3.6	17
13	Development of Novel Fluorescent Probes for the Analysis of Protein Interactions under Physiological Conditions with Medical Devices. Langmuir, 2013, 29, 1420-1426.	3.5	3
14	Antibacterial effect of incorporating silver ions in electrochemically deposited hydroxyapatite coating: An experimental study. JRSM Short Reports, 2013, 4, 204253331348121.	0.6	2
15	The effects of microporosity on osteoinduction of calcium phosphate bone graft substitute biomaterials. Acta Biomaterialia, 2012, 8, 2788-2794.	8.3	109
16	Effect of increased strut porosity of calcium phosphate bone graft substitute biomaterials on osteoinduction. Journal of Biomedical Materials Research - Part A, 2012, 100A, 1550-1555.	4.0	48
17	Development of a hydroxyapatite coating containing silver for the prevention of periâ€prosthetic infection. Journal of Orthopaedic Research, 2012, 30, 356-363.	2.3	30
18	Bioactivity And Bone Formation In Silicon-Substituted Hydroxyapatite. Sakarya University Journal of Science, 2012, 16, 170-177.	0.7	0

Karin Hing

#	Article	IF	CITATIONS
19	Effects of serum protein on ionic exchange between culture medium and microporous hydroxyapatite and silicate-substituted hydroxyapatite. Journal of Materials Science: Materials in Medicine, 2011, 22, 2155-2164.	3.6	18
20	Increasing strut porosity in silicateâ€substituted calciumâ€phosphate bone graft substitutes enhances osteogenesis. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 97B, 245-254.	3.4	41
21	The Osteoinductivity of Silicate-Substituted Calcium Phosphate. Journal of Bone and Joint Surgery - Series A, 2011, 93, 2219-2226.	3.0	47
22	Effect of Silicateâ€6ubstitution on Attachment and Early Development of Human Osteoblastâ€Like Cells Seeded on Microporous Hydroxyapatite Discs. Advanced Engineering Materials, 2010, 12, B26.	3.5	22
23	Surface Physiochemistry Affects Protein Adsorption to Stoichiometric and Silicateâ€Substituted Microporous Hydroxyapatites. Advanced Engineering Materials, 2010, 12, B113.	3.5	17
24	Nano-scale manipulation of silicate-substituted apatite chemistry impacts surface charge, hydrophilicity, protein adsorption and cell attachment. International Journal of Nano and Biomaterials, 2008, 1, 299.	0.1	12
25	Comparative performance of three ceramic bone graft substitutes. Spine Journal, 2007, 7, 475-490.	1.3	257
26	In vitro testing of Nd:YAG laser processed calcium phosphate coatings. Journal of Materials Science: Materials in Medicine, 2006, 17, 1153-1160.	3.6	9
27	Effect of silicon level on rate, quality and progression of bone healing within silicate-substituted porous hydroxyapatite scaffolds. Biomaterials, 2006, 27, 5014-5026.	11.4	333
28	The structure of the bond between bone and porous silicon-substituted hydroxyapatite bioceramic implants. Journal of Biomedical Materials Research - Part A, 2006, 78A, 25-33.	4.0	52
29	Surface charge and the effect of excess calcium ions on the hydroxyapatite surface. Biomaterials, 2005, 26, 6818-6826.	11.4	129
30	Bioceramic Bone Graft Substitutes: Influence of Porosity and Chemistry. International Journal of Applied Ceramic Technology, 2005, 2, 184-199.	2.1	304
31	Microporosity enhances bioactivity of synthetic bone graft substitutes. Journal of Materials Science: Materials in Medicine, 2005, 16, 467-475.	3.6	282
32	Hydroxyapatite promotes superior keratocyte adhesion and proliferation in comparison with current keratoprosthesis skirt materials. British Journal of Ophthalmology, 2005, 89, 1356-1362.	3.9	35
33	Porosity variation in hydroxyapatite and osteoblast morphology: a scanning electron microscopy study. Journal of Microscopy, 2004, 215, 100-110.	1.8	112
34	An ultrastructural study of cellular response to variation in porosity in phase-pure hydroxyapatite. Journal of Microscopy, 2004, 216, 97-109.	1.8	26
35	Mediation of bone ingrowth in porous hydroxyapatite bone graft substitutes. Journal of Biomedical Materials Research Part B, 2004, 68A, 187-200.	3.1	171
36	Bone repair in the twenty–first century: biology, chemistry or engineering?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2004, 362, 2821-2850.	3.4	319

Karin Hing

#	Article	IF	CITATIONS
37	A preliminary study on the enhancement of the osteointegration of a novel synthetic hydroxyapatite scaffoldin vivo. Journal of Biomedical Materials Research Part B, 2003, 66A, 241-246.	3.1	84
38	A comparative study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules. Journal of Materials Science: Materials in Medicine, 2002, 13, 1199-1206.	3.6	435
39	Quantification of bone ingrowth within bone-derived porous hydroxyapatite implants of varying density. Journal of Materials Science: Materials in Medicine, 1999, 10, 663-670.	3.6	106
40	Characterization of porous hydroxyapatite. Journal of Materials Science: Materials in Medicine, 1999, 10, 135-145.	3.6	287
41	Biomechanical assessment of bone ingrowth in porous hydroxyapatite. Journal of Materials Science: Materials in Medicine, 1997, 8, 731-736.	3.6	60
42	Encouraging Nature with Ceramics: The Roles of Surface Roughness and Physio-Chemistry on Cell Response to Substituted Apatites. Advances in Science and Technology, 0, , .	0.2	1