
MarÃ-a Angeles DÃ-az-GarcÃ-a

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/969309/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Excited states engineering enables efficient near-infrared lasing in nanographenes. Materials Horizons, 2022, 9, 393-402.	12.2	12
2	Periâ€Acenoacene for Solution Processed Distributed Feedback Laser: The Effect of 1,2â€Oxaborine Doping. Advanced Optical Materials, 2022, 10, .	7.3	9
3	Unveiling photophysical and photonic phenomena by means of optical gain measurements in waveguides and solutions. Optics and Laser Technology, 2021, 136, 106766.	4.6	3
4	Effect of Substituents at Imide Positions on the Laser Performance of 1,7-Bay-Substituted Perylenediimide Dyes. Journal of Physical Chemistry C, 2021, 125, 12277-12288.	3.1	7
5	Simultaneous Determination of Refractive Index and Thickness of Submicron Optical Polymer Films from Transmission Spectra. Polymers, 2021, 13, 2545.	4.5	9
6	Nearâ€Infrared Lasing in Fourâ€Zigzag Edged Nanographenes by 1D versus 2D Electronic Ï€â€Conjugation. Advanced Functional Materials, 2021, 31, 2105073.	14.9	25
7	N,N′-Bis(3-methylphenyl)-N,N′-dyphenylbenzidine Based Distributed Feedback Lasers with Holographically Fabricated Polymeric Resonators. Polymers, 2021, 13, 3843.	4.5	4
8	Violet-emitting distributed-feedback laser using a naphtho[2,1- <i>b</i> :6,5- <i>b</i> ′]difuran derivative. Journal of Materials Chemistry C, 2021, 9, 17287-17290.	5.5	1
9	Blue and Deepâ€Blueâ€Emitting Organic Lasers with Top‣ayer Distributed Feedback Resonators. Advanced Optical Materials, 2020, 8, 2001153.	7.3	12
10	Dual Amplified Spontaneous Emission and Lasing from Nanographene Films. Nanomaterials, 2020, 10, 1525.	4.1	14
11	Kinetically Protected Carbon-Bridged Oligo(<i>p</i> -phenylenevinylene) Derivatives for Blue Color Amplified Spontaneous Emission. Bulletin of the Chemical Society of Japan, 2020, 93, 751-758.	3.2	9
12	Coveâ€Edged Nanographenes with Localized Double Bonds. Angewandte Chemie - International Edition, 2020, 59, 8113-8117.	13.8	30
13	Coveâ€Edged Nanographenes with Localized Double Bonds. Angewandte Chemie, 2020, 132, 8190-8194.	2.0	18
14	Peryleneâ€Fused, Aggregationâ€Free Polycyclic Aromatic Hydrocarbons for Solutionâ€Processed Distributed Feedback Lasers. Angewandte Chemie, 2020, 132, 15037-15044.	2.0	6
15	Peryleneâ€Fused, Aggregationâ€Free Polycyclic Aromatic Hydrocarbons for Solutionâ€Processed Distributed Feedback Lasers. Angewandte Chemie - International Edition, 2020, 59, 14927-14934.	13.8	24
16	Design, synthesis and amplified spontaneous emission of 1,2,5-benzothiadiazole derivatives. Journal of Materials Chemistry C, 2019, 7, 9996-10007.	5.5	21
17	Controlling the emission properties of solution-processed organic distributed feedback lasers through resonator design. Scientific Reports, 2019, 9, 11159.	3.3	20
18	Solution-processed nanographene distributed feedback lasers. Nature Communications, 2019, 10, 3327.	12.8	59

#	Article	IF	CITATIONS
19	Sub-400â€ ⁻ nm film thickness determination from transmission spectra in organic distributed feedback lasers fabrication. Thin Solid Films, 2019, 692, 137580.	1.8	8
20	Transport and Optical Gaps in Amorphous Organic Molecular Materials. Molecules, 2019, 24, 609.	3.8	0
21	Carbonâ€Bridged <i>p</i> â€Phenylenevinylene Polymer for Highâ€Performance Solutionâ€Processed Distributed Feedback Lasers. Advanced Optical Materials, 2018, 6, 1800069.	7.3	20
22	Optimization of the Electrochemically Generated Luminescence of Polyfluorene Films. Journal of Physical Chemistry C, 2018, 122, 3608-3616.	3.1	1
23	Influence of Blending Ratio and Polymer Matrix on the Lasing Properties of Perylenediimide Dyes. Journal of Physical Chemistry C, 2018, 122, 24896-24906.	3.1	23
24	Bis(aminoaryl) Carbonâ€Bridged Oligo(phenylenevinylene)s Expand the Limits of Electronic Couplings. Angewandte Chemie - International Edition, 2017, 56, 2898-2902.	13.8	50
25	Molecular aggregation of naphthalimide organic semiconductors assisted by amphiphilic and lipophilic interactions: a joint theoretical and experimental study. Physical Chemistry Chemical Physics, 2017, 19, 6206-6215.	2.8	9
26	Plasmonic Enhancement in the Fluorescence of Organic and Biological Molecules by Photovoltaic Tweezing Assembly. Advanced Materials Technologies, 2017, 2, 1700024.	5.8	14
27	Are Electron Affinity and Ionization Potential Intrinsic Parameters to Predict the Electron or Hole Acceptor Character of Amorphous Molecular Materials?. Journal of Physical Chemistry Letters, 2017, 8, 2445-2449.	4.6	40
28	An Efficient and Colorâ€Tunable Solutionâ€Processed Organic Thinâ€Film Laser with a Polymeric Topâ€Layer Resonator. Advanced Optical Materials, 2017, 5, 1700238.	7.3	39
29	Two-dimensional distributed feedback lasers with thermally-nanoimprinted perylenediimide-containing films. Optical Materials Express, 2017, 7, 1295.	3.0	6
30	Organic distributed feedback laser to monitor solvent extraction upon thermal annealing in solution-processed polymer films. Sensors and Actuators B: Chemical, 2016, 232, 605-610.	7.8	10
31	Organic distributed feedback laser for label-free biosensing of ErbB2 protein biomarker. Sensors and Actuators B: Chemical, 2016, 223, 261-265.	7.8	28
32	Improved Amplified Spontaneous Emission of Dyeâ€Doped Functionalized Mesostructured Silica Waveguide Films. Advanced Optical Materials, 2015, 3, 1454-1461.	7.3	3
33	Solution-processable, photo-stable, low-threshold, and broadly tunable thin film organic lasers based on novel high-performing laser dyes. Proceedings of SPIE, 2015, , .	0.8	3
34	Label-free sensors based on perylenediimide-doped polystyrene distributed feedback lasers. Proceedings of SPIE, 2015, , .	0.8	0
35	Distributed feedback lasers based on perylenediimide dyes for label-free refractive index sensing. Sensors and Actuators B: Chemical, 2015, 220, 1368-1375.	7.8	29
36	Singular Temperatures Connected to Charge Transport Mechanism Transitions in Perylene Bisimides from Steady-State Photocurrent Measurements. Journal of Physical Chemistry C, 2015, 119, 14023-14028.	3.1	3

#	Article	IF	CITATIONS
37	Carbon-bridged oligo(p-phenylenevinylene)s for photostable and broadly tunable, solution-processable thin film organic lasers. Nature Communications, 2015, 6, 8458.	12.8	105
38	Distributed feedback lasers based on dichromated poly(vinyl alcohol) reusable surface-relief gratings. Optical Materials Express, 2014, 4, 733.	3.0	13
39	Electron Transport in a Water-Soluble Liquid-Crystalline Perylene Bisimide. Journal of Physical Chemistry C, 2014, 118, 26577-26583.	3.1	10
40	Thermal-nanoimprint lithography for perylenediimide-based distributed feedback laser fabrication. Microelectronic Engineering, 2014, 114, 52-56.	2.4	4
41	Perylenediimide-based distributed feedback lasers with holographic relief gratings on dichromated gelatine. Journal of Applied Physics, 2013, 114, .	2.5	19
42	Comparing the distribution of the electronic gap of an organic molecule with its photoluminescence spectrum. Applied Physics Letters, 2013, 102, 163307.	3.3	3
43	Amplified Spontaneous Emission in Pentathienoacene Dioxides by Direct Optical Pump and by Energy Transfer: Correlation with Photophysical Parameters. Advanced Optical Materials, 2013, 1, 588-599.	7.3	11
44	Improved performance of perylenediimide-based lasers. Journal of Materials Chemistry C, 2013, 1, 1182-1191.	5.5	47
45	1,7â€Bayâ€Substituted Perylenediimide Derivative with Outstanding Laser Performance. Advanced Optical Materials, 2013, 1, 933-938.	7.3	58
46	Thickness dependence of amplified spontaneous emission in low-absorbing organic waveguides. Applied Optics, 2012, 51, 3287.	1.8	30
47	Influence of the excitation area on the thresholds of organic second-order distributed feedback lasers. Applied Physics Letters, 2012, 101, 223303.	3.3	25
48	Film thickness and grating depth variation in organic second-order distributed feedback lasers. Journal of Applied Physics, 2012, 112, .	2.5	43
49	Stimulated Resonance Raman Scattering and Laser Oscillation in Highly Emissive Distyrylbenzeneâ€Based Molecular Crystals. Advanced Materials, 2012, 24, 6473-6478.	21.0	62
50	Millisecond photorefractivity with novel dicyanomethylenedihydrofuran-containing polymers. Journal of Materials Chemistry, 2012, 22, 12220.	6.7	9
51	Efficient organic distributed feedback lasers with imprinted active films. Optics Express, 2011, 19, 22443.	3.4	47
52	Very Large Photoconduction Enhancement Upon Selfâ€Assembly of a New Triindole Derivative in Solutionâ€Processed Films. Advanced Functional Materials, 2011, 21, 738-745.	14.9	25
53	Highly photostable solid-state organic distributed feedback laser fabricated via thermal nanoimprint lithography. Microelectronic Engineering, 2010, 87, 1428-1430.	2.4	6
54	Second-order distributed feedback lasers based on films containing perylenediimide derivatives. Proceedings of SPIE, 2010, , .	0.8	1

#	Article	IF	CITATIONS
55	Amplified Spontaneous Emission Properties of Semiconducting Organic Materials. International Journal of Molecular Sciences, 2010, 11, 2546-2565.	4.1	50
56	Critical Temperatures in the Photorefractive Polymer Composite Behavior. Journal of Physical Chemistry Letters, 2010, 1, 383-387.	4.6	2
57	Blue surface-emitting distributed feedback lasers based on TPD-doped films. Applied Optics, 2010, 49, 463.	2.1	25
58	Highly photostable organic distributed feedback laser emitting at 573 nm. Applied Physics Letters, 2010, 97, 171104.	3.3	43
59	Optimization of the Laser Properties of Polymer Films Doped with N,N´-Bis(3-methylphenyl)-N,N´-diphenylbenzidine. Materials, 2009, 2, 1288-1304.	2.9	7
60	Nonlinear optical properties of phthalocyanines and related compounds. Journal of Porphyrins and Phthalocyanines, 2009, 13, 652-667.	0.8	33
61	Enhanced Photorefractivity of Poly(<i>N</i> â€vinylcarbazole)â€Based Composites through Electricâ€Field Treatments and Ionic Liquid Doping. Advanced Functional Materials, 2009, 19, 428-437.	14.9	11
62	Asymmetry between Absorption and Photoluminescence Line Shapes of TPD: Spectroscopic Fingerprint of the Twisted Biphenyl Core. Journal of Physical Chemistry A, 2009, 113, 315-324.	2.5	33
63	Phthalocyanines as Efficient Sensitizers in Low- <i>T</i> _g Hole-Conducting Photorefractive Polymer Composites. Chemistry of Materials, 2009, 21, 2714-2720.	6.7	23
64	Effect of structural modifications in the laser properties of polymer films doped with perylenebisimide derivatives. Synthetic Metals, 2009, 159, 2293-2295.	3.9	20
65	Effect of ring fusion on the amplified spontaneous emission properties of oligothiophenes. Journal of Materials Chemistry, 2009, 19, 6556.	6.7	17
66	Modelling absorption and photoluminescence of TPD. Journal of Luminescence, 2008, 128, 845-847.	3.1	4
67	Determination of the glass transition temperature of photorefractive polymer composites from photoconductivity measurements. Applied Physics Letters, 2008, 92, 041101.	3.3	16
68	Photorefractive polymer composites using a trinitrofluorenone–C60 dyad with a conformationally flexible linker as photosensitizer. Synthetic Metals, 2007, 157, 1064-1070.	3.9	8
69	Amplified spontaneous emission in polymer films doped with a perylenediimide derivative. Applied Optics, 2007, 46, 3836.	2.1	40
70	Effect of Structural Modifications in the Spectral and Laser Properties of Perylenediimide Derivatives. Journal of Physical Chemistry C, 2007, 111, 13595-13605.	3.1	67
71	The structure and energetics of TPD ground and excited states. Chemical Physics, 2007, 332, 48-54.	1.9	21
72	Amplified spontaneous emission in TPD-based waveguides: thickness and TPD concentration		2

dependence., 2006, , .

#	Article	IF	CITATIONS
73	Concentration dependence of amplified spontaneous emission in organic-based waveguides. Organic Electronics, 2006, 7, 319-329.	2.6	38
74	Photorefractive properties of an unsensitized polymer composite based on a dicyanostyrene derivative as nonlinear optical chromophore. Applied Physics Letters, 2005, 87, 261111.	3.3	11
75	Concentration dependence of amplified spontaneous emission in two oligo-(p-phenylenevinylene) derivatives. Journal of Applied Physics, 2005, 97, 063522.	2.5	20
76	Tuneability of amplified spontaneous emission through control of the thickness in organic-based waveguides. Journal of Applied Physics, 2005, 97, 093103.	2.5	51
77	TPD-BASED BLUE ORGANIC LASERS. Journal of Nonlinear Optical Physics and Materials, 2004, 13, 621-626.	1.8	11
78	Synthesis and Electrochemical and Photorefractive Properties of New Trinitrofluorenoneâ^'C60Photosensitizers. Chemistry of Materials, 2004, 16, 5021-5026.	6.7	20
79	Light-emitting diodes and lasers based on polymer films doped with small organic molecules and rare-earth complexes. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 2706-2714.	2.1	6
80	Energy transfer from organics to rare-earth complexes. Applied Physics Letters, 2002, 81, 3924-3926.	3.3	44
81	Dye-doped polymers for blue organic diode lasers. Applied Physics Letters, 2002, 80, 4486-4488.	3.3	42
82	Index of refraction and waveguiding in thin films of a conjugated polymer which exhibits stimulated emission. Synthetic Metals, 1999, 102, 1091-1092.	3.9	24
83	Photorefractive Properties of Poly(N-vinyl carbazole)-Based Composites for High-Speed Applications. Chemistry of Materials, 1999, 11, 1784-1791.	6.7	129
84	Microstructure of thin films of photoluminescent semiconducting polymers. Polymer, 1998, 39, 2299-2304.	3.8	124
85	Synthesis and third-order NLO properties in LB films of triazolehemiporphyrazines. Synthetic Metals, 1998, 93, 213-218.	3.9	13
86	Semiconducting polymers as materials for photonic devices. Current Opinion in Solid State and Materials Science, 1998, 3, 16-22.	11.5	33
87	Semiconducting polymer distributed feedback lasers. Applied Physics Letters, 1998, 72, 1536-1538.	3.3	238
88	Amplified spontaneous emission from photopumped films of a conjugated polymer. Physical Review B, 1998, 58, 7035-7039.	3.2	292
89	Synthesis, structure and second-order nonlinear optical properties of highly functionalized 6-aminopentafulvenes. Journal of Materials Chemistry, 1998, 8, 619-627.	6.7	1
90	<title>Third-order nonlinear optical properties of phthalocyanines and related compounds</title> . ,		0

1998,,.

#	Article	IF	CITATIONS
91	High-speed photorefractive polymer composites. Applied Physics Letters, 1998, 73, 1490-1492.	3.3	186
92	<title>Trapping studies on photorefractive polymers</title> ., 1998,,.		0
93	Second harmonic generation from trinitro-substituted subphthalocyanines films: Evidence of noncentrosymmetric molecular organization. Applied Physics Letters, 1997, 70, 1802-1804.	3.3	47
94	Free electron model for optical polarizabilities: Role of dimensionality. Journal of Modern Optics, 1997, 44, 179-190.	1.3	5
95	"Plastic―lasers: Comparison of gain narrowing with a soluble semiconducting polymer in waveguides and microcavities. Applied Physics Letters, 1997, 70, 3191-3193.	3.3	112
96	Stimulated emission and lasing in solid films of conjugated polymers: ultrafast photophysics and photon confinement via scattering. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 1997, 355, 775-787.	3.4	13
97	Highly photoluminescent conjugated polymers: stimulated emission and device applications. , 1997, , .		1
98	<title>Light emission from semiconducting polymers: LEDs, lasers, and white light for the future</title> . , 1997, 3148, 22.		0
99	Pushâ^'Pull Phthalocyanines:Â A Hammett Correlation between the Cubic Hyperpolarizability and the Donorâ^'Acceptor Character of the Substituents. Journal of Physical Chemistry A, 1997, 101, 9773-9777.	2.5	74
100	Synthesis, Characterization, Optical Spectroscopic, Electronic Structure, and Second-Order Nonlinear Optical (NLO) Properties of a Novel Class of Donorâ^'Acceptor Bis(salicylaldiminato)nickel(II) Schiff Base NLO Chromophores. Journal of the American Chemical Society, 1997, 119, 9550-9557.	13.7	273
101	<title>Photopumped gain narrowing experiments in oriented films of semiconducting polymers</title> . , 1997, , .		1
102	New Developments in the Photonic Applications of Conjugated Polymers. Accounts of Chemical Research, 1997, 30, 430-436.	15.6	485
103	Macroscopic third order nonlinear optical behavior of metal-containing phthalocyanines bearing alkyl-amido functional groups. Synthetic Metals, 1997, 84, 923-924.	3.9	11
104	Conjugated polymers as solid-state laser materials. Synthetic Metals, 1997, 91, 35-40.	3.9	61
105	Bis(arylidene)tetrathiapentalenes — novel building blocks for extended tetrathiafulvalenes and conducting polymers. Synthetic Metals, 1997, 84, 445-446.	3.9	3
106	Plastic lasers: Semiconducting polymers as a new class of solid-state laser materials. Synthetic Metals, 1997, 84, 455-462.	3.9	148
107	Nonlinear absorption of soluble octasubstituted metallophtalocyanines at 1.064 μm. Chemical Physics Letters, 1997, 266, 86-90.	2.6	20
108	Subphthalocyanines:Â Novel Targets for Remarkable Second-Order Optical Nonlinearities. Journal of the American Chemical Society, 1996, 118, 2746-2747.	13.7	146

MarÃa Angeles DÃaz-GarcÃa

#	Article	IF	CITATIONS
109	Semiconducting Polymers: A New Class of Solid-State Laser Materials. Science, 1996, 273, 1833-1836.	12.6	837
110	THG from copper phthalocyanines in a sol—gel host. Synthetic Metals, 1996, 83, 273-276.	3.9	11
111	Laser emission from solutions and films containing semiconducting polymer and titanium dioxide nanocrystals. Chemical Physics Letters, 1996, 256, 424-430.	2.6	295
112	Thirdâ€order nonlinear optical susceptibilities of the Langmuir–Blodgett films of octaâ€substituted metallophthalocyanines. Applied Physics Letters, 1996, 69, 293-295.	3.3	22
113	Identification of two-photon states in phthalocyanines by third harmonic generation spectroscopy. Chemical Physics Letters, 1995, 235, 535-540.	2.6	30
114	Third Harmonic Generation Spectroscopy of Boron Subphthalocyanine. The Journal of Physical Chemistry, 1995, 99, 14988-14991.	2.9	54
115	Synthesis and second-order non-linear optical properties of substituted aminobenzoquinones. Journal of Materials Chemistry, 1995, 5, 385-387.	6.7	2
116	Third-Order Nonlinear Optical Properties of Soluble Metallotriazolylhemiporphyrazines. The Journal of Physical Chemistry, 1994, 98, 4495-4497.	2.9	51
117	Third-Order Nonlinear Optical Properties of Soluble Octasubstituted Metallophthalocyanines. The Journal of Physical Chemistry, 1994, 98, 8761-8764.	2.9	120
118	Sizable Second-Order Nonlinear Optical Response of Donor-Acceptor Bis(salicylaldiminato)nickel(II) Schiff Base Complexes. Chemistry of Materials, 1994, 6, 881-883.	6.7	79
119	<title>Third-order hyperpolarizabilities of soluble organometallic compounds</title> . , 1994, 2285, 227.		2
120	Direct measurement of ordinary refractive index of proton exchanged LiNbO3 waveguides. Optics Communications, 1992, 92, 40-44.	2.1	26