Brendan D Snarr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9689513/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Co-Operative Biofilm Interactions between Aspergillus fumigatus and Pseudomonas aeruginosa through Secreted Galactosaminogalactan Exopolysaccharide. Journal of Fungi (Basel, Switzerland), 2022, 8, 336.	3.5	6
2	The IL-1 Receptor Is Required to Maintain Neutrophil Viability and Function During Aspergillus fumigatus Airway Infection. Frontiers in Immunology, 2021, 12, 675294.	4.8	12
3	Marginating transitional B cells modulate neutrophils in the lung during inflammation and pneumonia. Journal of Experimental Medicine, 2021, 218, .	8.5	15
4	Galectin-3 enhances neutrophil motility and extravasation into the airways during Aspergillus fumigatusÂinfection. PLoS Pathogens, 2020, 16, e1008741.	4.7	33
5	Structural and biochemical characterization of the exopolysaccharide deacetylase Agd3 required for Aspergillus fumigatus biofilm formation. Nature Communications, 2020, 11, 2450.	12.8	38
6	What Are the Functions of Chitin Deacetylases in Aspergillus fumigatus?. Frontiers in Cellular and Infection Microbiology, 2020, 10, 28.	3.9	23
7	Hoisted by their own petard: do microbial enzymes hold the solution to treating and preventing biofilm infections?. Future Microbiology, 2018, 13, 395-398.	2.0	1
8	Posaconazole-Loaded Leukocytes as a Novel Treatment Strategy Targeting Invasive Pulmonary Aspergillosis. Journal of Infectious Diseases, 2017, 215, jiw513.	4.0	32
9	Microbial glycoside hydrolases as antibiofilm agents with cross-kingdom activity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7124-7129.	7.1	88
10	The Interface between Fungal Biofilms and Innate Immunity. Frontiers in Immunology, 2017, 8, 1968.	4.8	98
11	Exopolysaccharide biosynthetic glycoside hydrolases can be utilized to disrupt and prevent <i>Pseudomonas aeruginosa</i> biofilms. Science Advances, 2016, 2, e1501632.	10.3	201
12	Deacetylation of Fungal Exopolysaccharide Mediates Adhesion and Biofilm Formation. MBio, 2016, 7, e00252-16.	4.1	91
13	Sph3 Is a Glycoside Hydrolase Required for the Biosynthesis of Galactosaminogalactan in Aspergillus fumigatus. Journal of Biological Chemistry, 2015, 290, 27438-27450.	3.4	77
14	Evolution of the Immune Response to Chronic Airway Colonization with Aspergillus fumigatus Hyphae. Infection and Immunity, 2015, 83, 3590-3600.	2.2	31
15	Divergent Targets of Aspergillus fumigatus AcuK and AcuM Transcription Factors during Growth <i>In Vitro</i> versus Invasive Disease. Infection and Immunity, 2015, 83, 923-933.	2.2	29
16	The Fungal Exopolysaccharide Galactosaminogalactan Mediates Virulence by Enhancing Resistance to Neutrophil Extracellular Traps. PLoS Pathogens, 2015, 11, e1005187.	4.7	167
17	Aspergillus Galactosaminogalactan Mediates Adherence to Host Constituents and Conceals Hyphal β-Glucan from the Immune System. PLoS Pathogens, 2013, 9, e1003575.	4.7	256