
Merve Meinhardt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/968682/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	LEDs for energy efficient greenhouse lighting. Renewable and Sustainable Energy Reviews, 2015, 49, 139-147.	16.4	327
2	Wavelength-dependent penetration depths of ultraviolet radiation in human skin. Journal of Biomedical Optics, 2008, 13, 044030.	2.6	150
3	Lighting with laser diodes. Advanced Optical Technologies, 2013, 2, 313-321.	1.7	68
4	Sewerage tunnel leakage detection using a fibre optic moisture-detecting sensor system. Sensors and Actuators A: Physical, 2014, 220, 62-68.	4.1	41
5	Iterative morphological and mollifier-based baseline correction for Raman spectra. Journal of Raman Spectroscopy, 2017, 48, 336-342.	2.5	40
6	Hierarchical Cluster Analysis (HCA) of Microorganisms: An Assessment of Algorithms for Resonance Raman Spectra. Applied Spectroscopy, 2011, 65, 165-173.	2.2	36
7	Cladded self-written multimode step-index waveguides using a one-polymer approach. Optics Letters, 2015, 40, 1830.	3.3	34
8	Trimodal system for in vivo skin cancer screening with combined optical coherence tomographyâ€Raman and colocalized optoacoustic measurements. Journal of Biophotonics, 2018, 11, e201700288.	2.3	34
9	Development of a combined OCT-Raman probe for the prospective <i>in vivo</i> clinical melanoma skin cancer screening. Review of Scientific Instruments, 2017, 88, 105103.	1.3	33
10	Comparative study of presurgical skin infiltration depth measurements of melanocytic lesions with OCT and high frequency ultrasound. Journal of Biophotonics, 2017, 10, 854-861.	2.3	32
11	Of microparticles and bacteria identification – (resonance) Raman micro-spectroscopy as a tool for biofilm analysis. Water Research, 2011, 45, 4571-4582.	11.3	27
12	Absorption Spectra of Human Skin <i>In Vivo</i> in the Ultraviolet Wavelength Range Measured by Optoacoustics. Photochemistry and Photobiology, 2009, 85, 70-77.	2.5	26
13	Effects of ethanol, formaldehyde, and gentle heat fixation in confocal resonance Raman microscopy of purple nonsulfur bacteria. Microscopy Research and Technique, 2011, 74, 177-183.	2.2	24
14	Temperature-sensitive gating of hCx26: high-resolution Raman spectroscopy sheds light on conformational changes. Biomedical Optics Express, 2014, 5, 2054.	2.9	21
15	Non-Contact Dermatoscope with Ultra-Bright Light Source and Liquid Lens-Based Autofocus Function. Applied Sciences (Switzerland), 2019, 9, 2177.	2.5	20
16	Effect of ultraviolet adaptation on the ultraviolet absorption spectra of human skin <i>in vivo</i> . Photodermatology Photoimmunology and Photomedicine, 2008, 24, 76-82.	1.5	18
17	Polymer Based Whispering Gallery Mode Humidity Sensor. Sensors, 2018, 18, 2383.	3.8	18
18	Raman Sensing and Its Multimodal Combination with Optoacoustics and OCT for Applications in the Life Sciences. Sensors, 2019, 19, 2387.	3.8	17

MERVE MEINHARDT

#	Article	IF	CITATIONS
19	Confocal Raman microscopy and fluorescent in situ hybridization – A complementary approach for biofilm analysis. Chemosphere, 2016, 161, 112-118.	8.2	15
20	A non-contact remote digital dermoscope to support cancer screening and diagnosis of inflammatory skin disease. Biomedical Physics and Engineering Express, 2017, 3, 055005.	1.2	15
21	Absorption and resonance Raman characteristics of <i>\hat{l}^2</i> -carotene in water-ethanol mixtures, emulsion and hydrogel. AIP Advances, 2018, 8, .	1.3	15
22	Mueller Matrix Measurement of Electrospun Fiber Scaffolds for Tissue Engineering. Polymers, 2019, 11, 2062.	4.5	15
23	Single Transparent Piezoelectric Detector for Optoacoustic Sensing—Design and Signal Processing. Sensors, 2019, 19, 2195.	3.8	13
24	Two efficient approaches for modeling of Raman scattering in homogeneous turbid media. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2016, 33, 426.	1.5	12
25	A computational model for previtamin D3 production in skin. Photochemical and Photobiological Sciences, 2012, 11, 731-737.	2.9	11
26	Simple model to simulate OCT-depth signal in weakly and strongly scattering homogeneous media. Journal of Optics (United Kingdom), 2016, 18, 125302.	2.2	11
27	All-polymer whispering gallery mode sensor system. Optics Express, 2016, 24, 6052.	3.4	11
28	Light source design for spectral tuning in biomedical imaging. Journal of Medical Imaging, 2015, 2, 044501.	1.5	10
29	Violaxanthin cycle kinetics analysed <i>in vivo</i> with resonance Raman spectroscopy. Journal of Raman Spectroscopy, 2017, 48, 686-691.	2.5	9
30	In vivo determination of carotenoid resonance excitation profiles of <i>Chlorella vulgaris</i> , <i>Haematococcus pluvialis</i> , and <i>Porphyridium purpureum</i> . Journal of Raman Spectroscopy, 2018, 49, 404-411.	2.5	9
31	Surface-immobilized whispering gallery mode resonator spheres for optical sensing. Sensors and Actuators A: Physical, 2016, 252, 82-88.	4.1	7
32	Monte Carlo simulation of the influence of internal optical absorption on the external Raman signal for biological samples. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2019, 36, 877.	1.5	7
33	Numerical prediction and measurement of optoacoustic signals generated in PVA-H tissue phantoms. European Physical Journal D, 2018, 72, 1.	1.3	6
34	Efficient procedure for the measurement of preresonant excitation profiles in UV Raman spectroscopy. Review of Scientific Instruments, 2017, 88, 073105.	1.3	5
35	Mueller Matrix Analysis of Collagen and Gelatin Containing Samples Towards More Objective Skin Tissue Diagnostics. Polymers, 2020, 12, 1400.	4.5	5
36	Tissue phantoms for multimodal approaches: Raman spectroscopy and optoacoustics. , 2014, , .		4

Tissue phantoms for multimodal approaches: Raman spectroscopy and optoacoustics. , 2014, , . 36

Merve Meinhardt

#	Article	IF	CITATIONS
37	Simulation of Raman scattering including detector parameters and sampling volume. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2017, 34, 2138.	1.5	4
38	Nonâ€contact remote digital dermoscopy – new perspectives on differential diagnosis of inflammatory skin diseases. Journal of the European Academy of Dermatology and Venereology, 2020, 34, e125-e126.	2.4	4
39	Mueller Matrix-Based Approach for the Ex Vivo Detection of Riboflavin-Treated Transparent Biotissue. Applied Sciences (Switzerland), 2021, 11, 11515.	2.5	4
40	An ultra-bright white LED based non-contact skin cancer imaging system with polarization control. , 2013, , .		2
41	All-polymer whispering gallery mode sensor for application in optofluidics. Optical Data Processing and Storage, 2017, 3, .	3.3	2
42	Modeling of Raman-Scattering Signals in Biological Tissues by Direct and Two-Step Approaches. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2018, 124, 180-186.	0.6	2
43	Optoacoustic inversion via convolution kernel reconstruction in the paraxial approximation and beyond. Photoacoustics, 2019, 13, 1-5.	7.8	2
44	Multivariate discrimination of heat shock proteins using a fiber optic Raman setup for <i>in situ</i> analysis of human perilymph. Review of Scientific Instruments, 2019, 90, 043110.	1.3	2
45	Optical properties of the human round window membrane. Journal of Biomedical Optics, 2017, 22, 1.	2.6	1
46	<title>Investigation of optical properties of human skin in the UV</title> . , 2002, , .		0
47	Optoacoustics, laser-induced fluorescence (LIF), and photometry for investigation of different skin types in vitro and in vivo. , 2003, 5143, 50.		Ο
48	Combining optoacoustics and resonance Raman spectroscopy for quantification of biomolecules in situ. , 2012, , .		0
49	Monte Carlo simulation of Raman confocal spectroscopy of beta-carotene solution. , 2016, , .		Ο
50	UV-resonance Raman spectroscopy of amino acids. , 2016, , .		0
51	Polymer WGM arrays for optical sensing applications. , 2017, , .		Ο
52	Towards a multimodal device for clinical in-vivo skin cancer depth measurements. , 2017, , .		0
53	Non-contact fast Mueller matrix measurement system for investigation of bio-tissues. , 2020, , .		0