Vassilis Angelopoulos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/968636/publications.pdf

Version: 2024-02-01

594 papers 30,871 citations

80 h-index 9073 144 g-index

607 all docs

607
docs citations

607 times ranked 4230 citing authors

#	Article	IF	CITATIONS
1	The THEMIS Mission. Space Science Reviews, 2008, 141, 5-34.	3.7	1,256
2	Bursty bulk flows in the inner central plasma sheet. Journal of Geophysical Research, 1992, 97, 4027-4039.	3.3	980
3	The THEMIS ESA Plasma Instrument and In-flight Calibration. Space Science Reviews, 2008, 141, 277-302.	3.7	893
4	Neutral line model of substorms: Past results and present view. Journal of Geophysical Research, 1996, 101, 12975-13010.	3 . 3	861
5	Statistical characteristics of bursty bulk flow events. Journal of Geophysical Research, 1994, 99, 21257.	3.3	642
6	Tail Reconnection Triggering Substorm Onset. Science, 2008, 321, 931-935.	6.0	551
7	THEMIS observations of an earthwardâ€propagating dipolarization front. Geophysical Research Letters, 2009, 36, .	1.5	523
8	The Electric Field Instrument (EFI) for THEMIS. Space Science Reviews, 2008, 141, 303-341.	3.7	397
9	Explaining sudden losses of outer radiation belt electrons during geomagnetic storms. Nature Physics, 2012, 8, 208-212.	6.5	365
10	The Space Physics Environment Data Analysis System (SPEDAS). Space Science Reviews, 2019, 215, 9.	3.7	332
11	A THEMIS multicase study of dipolarization fronts in the magnetotail plasma sheet. Journal of Geophysical Research, 2011, 116, .	3.3	305
12	Detection of localized, plasma-depleted flux tubes or bubbles in the midtail plasma sheet. Journal of Geophysical Research, 1996, 101, 10817-10826.	3.3	284
13	Global distribution of whistlerâ€mode chorus waves observed on the THEMIS spacecraft. Geophysical Research Letters, 2009, 36, .	1.5	282
14	On the current sheets surrounding dipolarizing flux bundles in the magnetotail: The case for wedgelets. Journal of Geophysical Research: Space Physics, 2013, 118, 2000-2020.	0.8	278
15	The THEMIS Array of Ground-based Observatories forÂthe Study of Auroral Substorms. Space Science Reviews, 2008, 141, 357-387.	3.7	274
16	The Upgraded CARISMA Magnetometer Array inÂtheÂTHEMIS Era. Space Science Reviews, 2008, 141, 413-451.	3.7	258
17	The ARTEMIS Mission. Space Science Reviews, 2011, 165, 3-25.	3.7	257
18	Identifying the Driver of Pulsating Aurora. Science, 2010, 330, 81-84.	6.0	249

#	Article	IF	Citations
19	Electromagnetic Energy Conversion at Reconnection Fronts. Science, 2013, 341, 1478-1482.	6.0	234
20	Global distribution of wave amplitudes and wave normal angles of chorus waves using THEMIS wave observations. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	230
21	THEMIS observations of electromagnetic ion cyclotron wave occurrence: Dependence on AE, SYMH, and solar wind dynamic pressure. Journal of Geophysical Research, 2012, 117, .	3.3	223
22	Substorm triggering by new plasma intrusion: THEMIS allâ \in sky imager observations. Journal of Geophysical Research, 2010, 115, .	3.3	221
23	Kinetic structure of the sharp injection/dipolarization front in the flowâ€braking region. Geophysical Research Letters, 2009, 36, .	1.5	219
24	Multipoint analysis of a bursty bulk flow event on April 11, 1985. Journal of Geophysical Research, 1996, 101, 4967-4989.	3.3	184
25	Statistical characteristics of particle injections throughout the equatorial magnetotail. Journal of Geophysical Research: Space Physics, 2014, 119, 2512-2535.	0.8	180
26	Characteristics of ion flow in the quiet state of the inner plasma sheet. Geophysical Research Letters, 1993, 20, 1711-1714.	1.5	177
27	An Observation Linking the Origin of Plasmaspheric Hiss to Discrete Chorus Emissions. Science, 2009, 324, 775-778.	6.0	173
28	First Results from the THEMIS Mission. Space Science Reviews, 2008, 141, 453-476.	3.7	171
29	THEMIS Science Objectives and Mission Phases. Space Science Reviews, 2008, 141, 35-59.	3.7	168
30	Magnetotail flow bursts: Association to global magnetospheric circulation, relationship to ionospheric activity and direct evidence for localization. Geophysical Research Letters, 1997, 24, 2271-2274.	1.5	163
31	Multiple overshoot and rebound of a bursty bulk flow. Geophysical Research Letters, 2010, 37, .	1.5	153
32	Accelerated ions ahead of earthward propagating dipolarization fronts. Journal of Geophysical Research, 2010, 115, .	3.3	153
33	Evolution and slow decay of an unusual narrow ring of relativistic electrons near L ~ 3.2 following the September 2012 magnetic storm. Geophysical Research Letters, 2013, 40, 3507-3511.	1.5	150
34	Substorm current wedge driven by plasma flow vortices: THEMIS observations. Journal of Geophysical Research, 2009, 114, .	3.3	149
35	Magnetic flux transport by dipolarizing flux bundles. Journal of Geophysical Research: Space Physics, 2014, 119, 909-926.	0.8	149
36	Pulsating aurora from electron scattering by chorus waves. Nature, 2018, 554, 337-340.	13.7	149

#	Article	IF	CITATIONS
37	THEMIS ESA First Science Results and Performance Issues. Space Science Reviews, 2008, 141, 477-508.	3.7	148
38	THEMIS analysis of observed equatorial electron distributions responsible for the chorus excitation. Journal of Geophysical Research, 2010, 115, .	3. 3	148
39	Multipoint observations of magnetospheric compressionâ€related EMIC Pc1 waves by THEMIS and CARISMA. Geophysical Research Letters, 2008, 35, .	1.5	141
40	The THEMIS all-sky imaging arrayâ€"system design and initial results from the prototype imager. Journal of Atmospheric and Solar-Terrestrial Physics, 2006, 68, 1472-1487.	0.6	139
41	Global distribution of equatorial magnetosonic waves observed by THEMIS. Geophysical Research Letters, 2013, 40, 1895-1901.	1.5	137
42	Recent advances in understanding substorm dynamics. Geophysical Research Letters, 2012, 39, .	1.5	129
43	Intensification of preexisting auroral arc at substorm expansion phase onset: Waveâ€like disruption during the first tens of seconds. Geophysical Research Letters, 2008, 35, .	1.5	126
44	Evidence for a flux transfer event generated by multiple Xâ€line reconnection at the magnetopause. Geophysical Research Letters, 2010, 37, .	1.5	126
45	The effects of transient, localized electric fields on equatorial electron acceleration and transport toward the inner magnetosphere. Journal of Geophysical Research, 2012, 117, .	3.3	124
46	First Results of the THEMIS Search Coil Magnetometers. Space Science Reviews, 2008, 141, 509-534.	3.7	122
47	Current sheet measurements within a flapping plasma sheet. Journal of Geophysical Research, 1998, 103, 9177-9187.	3.3	119
48	Average thermodynamic and spectral properties of plasma in and around dipolarizing flux bundles. Journal of Geophysical Research: Space Physics, 2015, 120, 4369-4383.	0.8	119
49	Wave and particle characteristics of earthward electron injections associated with dipolarization fronts. Journal of Geophysical Research, 2010, 115, .	3.3	118
50	Global distributions of suprathermal electrons observed on THEMIS and potential mechanisms for access into the plasmasphere. Journal of Geophysical Research, 2010, 115, .	3.3	118
51	On the stormâ€time evolution of relativistic electron phase space density in Earth's outer radiation belt. Journal of Geophysical Research: Space Physics, 2013, 118, 2196-2212.	0.8	113
52	Whistlerâ€mode waves inside flux pileup region: Structured or unstructured?. Journal of Geophysical Research: Space Physics, 2014, 119, 9089-9100.	0.8	112
53	Energetic electron injections deep into the inner magnetosphere associated with substorm activity. Geophysical Research Letters, 2015, 42, 2079-2087.	1.5	112
54	On the cause and extent of outer radiation belt losses during the 30 September 2012 dropout event. Journal of Geophysical Research: Space Physics, 2014, 119, 1530-1540.	0.8	110

#	Article	IF	CITATIONS
55	The dependence of magnetic reconnection on plasma $\langle i \rangle \hat{l}^2 \langle j \rangle$ and magnetic shear: Evidence from magnetopause observations. Geophysical Research Letters, 2013, 40, 11-16.	1.5	109
56	Evaluation of whistlerâ€mode chorus intensification on the nightside during an injection event observed on the THEMIS spacecraft. Journal of Geophysical Research, 2009, 114, .	3.3	108
57	Application and validation of the spherical elementary currents systems technique for deriving ionospheric equivalent currents with the North American and Greenland ground magnetometer arrays. Journal of Geophysical Research, 2011, 116, .	3.3	107
58	Spatial distributions of the ion to electron temperature ratio in the magnetosheath and plasma sheet. Journal of Geophysical Research, 2012, 117 , .	3.3	103
59	Competing source and loss mechanisms due to waveâ€particle interactions in Earth's outer radiation belt during the 30 September to 3 October 2012 geomagnetic storm. Journal of Geophysical Research: Space Physics, 2014, 119, 1960-1979.	0.8	103
60	First observations of foreshock bubbles upstream of Earth's bow shock: Characteristics and comparisons to HFAs. Journal of Geophysical Research: Space Physics, 2013, 118, 1552-1570.	0.8	102
61	Characteristics of the Poynting flux and wave normal vectors of whistlerâ€mode waves observed on THEMIS. Journal of Geophysical Research: Space Physics, 2013, 118, 1461-1471.	0.8	101
62	Electron bulk heating in magnetic reconnection at Earth's magnetopause: Dependence on the inflow Alfvén speed and magnetic shear. Geophysical Research Letters, 2013, 40, 4475-4480.	1.5	101
63	Typical properties of rising and falling tone chorus waves. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	100
64	Anti-sunward high-speed jets in the subsolar magnetosheath. Annales Geophysicae, 2013, 31, 1877-1889.	0.6	99
65	The role of localized inductive electric fields in electron injections around dipolarizing flux bundles. Journal of Geophysical Research: Space Physics, 2016, 121, 9560-9585.	0.8	95
66	The role of transient ion foreshock phenomena in driving Pc5 ULF wave activity. Journal of Geophysical Research: Space Physics, 2013, 118, 299-312.	0.8	94
67	Largeâ€amplitude electric fields associated with bursty bulk flow braking in the Earth's plasma sheet. Journal of Geophysical Research: Space Physics, 2015, 120, 1832-1844.	0.8	94
68	Can flow bursts penetrate into the inner magnetosphere?. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	93
69	A THEMIS survey of flux ropes and traveling compression regions: Location of the near-Earth reconnection site during solar minimum. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	91
70	Characteristics of plasma flows at the inner edge of the plasma sheet. Journal of Geophysical Research, 2011, 116, .	3.3	89
71	Observations of Double Layers in Earth's Plasma Sheet. Physical Review Letters, 2009, 102, 155002.	2.9	88
72	lonospheric current signatures of transient plasma sheet flows. Journal of Geophysical Research, 2000, 105, 10677-10690.	3.3	87

#	Article	IF	CITATIONS
73	Modeling inward diffusion and slow decay of energetic electrons in the Earth's outer radiation belt. Geophysical Research Letters, 2015, 42, 987-995.	1.5	87
74	New Features of Electron Phase Space Holes Observed by the THEMIS Mission. Physical Review Letters, 2009, 102, 225004.	2.9	86
7 5	THEMIS observations of a hot flow anomaly: Solar wind, magnetosheath, and groundâ€based measurements. Geophysical Research Letters, 2008, 35, .	1.5	85
76	Multievent study of the correlation between pulsating aurora and whistler mode chorus emissions. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	85
77	Efficient diffuse auroral electron scattering by electrostatic electron cyclotron harmonic waves in the outer magnetosphere: A detailed case study. Journal of Geophysical Research, 2012, 117, .	3.3	85
78	Multipoint observations of dipolarization front formation by magnetotall reconnection. Journal of Geophysical Research, 2012, 117, .	3.3	84
79	Magnetosonic wave excitation by ion ring distributions in the Earth's inner magnetosphere. Journal of Geophysical Research: Space Physics, 2014, 119, 844-852.	0.8	84
80	Relativistic electron loss due to ultralow frequency waves and enhanced outward radial diffusion. Journal of Geophysical Research, 2010, 115, .	3.3	83
81	Characteristics of hissâ€like and discrete whistlerâ€mode emissions. Geophysical Research Letters, 2012, 39, .	1.5	83
82	Quasi-parallel whistler mode waves observed by THEMIS during near-earth dipolarizations. Annales Geophysicae, 2009, 27, 2259-2275.	0.6	83
83	Anomalous magnetosheath flows and distorted subsolar magnetopause for radial interplanetary magnetic fields. Geophysical Research Letters, 2009, 36, .	1.5	81
84	Electron fluxes and pitchâ€angle distributions at dipolarization fronts: THEMIS multipoint observations. Journal of Geophysical Research: Space Physics, 2013, 118, 744-755.	0.8	80
85	Electric and magnetic field observations of Pc4 and Pc5 pulsations in the inner magnetosphere: A statistical study. Journal of Geophysical Research, 2009, 114, .	3.3	79
86	A multisatellite study of a pseudoâ€substorm onset in the nearâ€Earth magnetotail. Journal of Geophysical Research, 1993, 98, 19355-19367.	3.3	78
87	Direct Evidence for a Three-Dimensional Magnetic Flux Rope Flanked by Two Active Magnetic Reconnection <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>X</mml:mi></mml:math> Lines at Earth's Magnetopause. Physical Review Letters. 2011. 107. 165007.	2.9	78
88	Radiation belt electron acceleration during the 17 March 2015 geomagnetic storm: Observations and simulations. Journal of Geophysical Research: Space Physics, 2016, 121, 5520-5536.	0.8	77
89	Suprathermal particle energization in dipolarization fronts: Particleâ€inâ€cell simulations. Journal of Geophysical Research: Space Physics, 2016, 121, 9483-9500.	0.8	77
90	Magnetospheric location of the equatorward prebreakup arc. Journal of Geophysical Research, 2012, 117, .	3.3	76

#	Article	IF	CITATIONS
91	Structures of dayside whistlerâ€mode waves deduced from conjugate diffuse aurora. Journal of Geophysical Research: Space Physics, 2013, 118, 664-673.	0.8	76
92	Time History of Events and Macroscale Interactions during Substorms observations of a series of hot flow anomaly events. Journal of Geophysical Research, $2010,115,.$	3.3	75
93	Mechanism of substorm current wedge formation: THEMIS observations. Geophysical Research Letters, 2012, 39, .	1.5	75
94	Magnetotail reconnection onset caused by electron kinetics with a strong external driver. Nature Communications, 2020, 11, 5049.	5.8	75
95	Poloidal ULF wave observed in the plasmasphere boundary layer. Journal of Geophysical Research: Space Physics, 2013, 118, 4298-4307.	0.8	74
96	On the nature of precursor flows upstream of advancing dipolarization fronts. Journal of Geophysical Research, 2011, 116, .	3.3	73
97	Dipolarization fronts in the magnetotail plasma sheet. Planetary and Space Science, 2011, 59, 517-525.	0.9	73
98	In situ observations of magnetotail reconnection prior to the onset of a small substorm. Journal of Geophysical Research, 1995, 100, 19121.	3.3	72
99	THEMIS observations of extreme magnetopause motion caused by a hot flow anomaly. Journal of Geophysical Research, 2009, 114 , .	3.3	70
100	The quasiâ€electrostatic mode of chorus waves and electron nonlinear acceleration. Journal of Geophysical Research: Space Physics, 2014, 119, 1606-1626.	0.8	70
101	On the presence and properties of cold ions near Earth's equatorial magnetosphere. Journal of Geophysical Research: Space Physics, 2014, 119, 1749-1770.	0.8	70
102	Statistical distribution of EMIC wave spectra: Observations from Van Allen Probes. Geophysical Research Letters, 2016, 43, 12,348.	1.5	69
103	Modulation of whistler mode chorus waves: 2. Role of density variations. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	68
104	Radial distributions of equatorial phase space density for outer radiation belt electrons. Geophysical Research Letters, 2012, 39, .	1.5	68
105	Substorm triggering by new plasma intrusion: Incoherentâ€scatter radar observations. Journal of Geophysical Research, 2010, 115, .	3.3	67
106	Modulation of whistler mode chorus waves: 1. Role of compressional Pc4-5 pulsations. Journal of Geophysical Research, 2011, 116, $n/a-n/a$.	3.3	67
107	Direct evidence for EMIC wave scattering of relativistic electrons in space. Journal of Geophysical Research: Space Physics, 2016, 121, 6620-6631.	0.8	67
108	Coupling of dipolarization front flow bursts to substorm expansion phase phenomena within the magnetosphere and ionosphere. Journal of Geophysical Research, 2012, 117, .	3.3	66

#	Article	IF	CITATIONS
109	On the role of pressure and flow perturbations around dipolarizing flux bundles. Journal of Geophysical Research: Space Physics, 2013, 118, 7104-7118.	0.8	66
110	First observation of risingâ€ŧone magnetosonic waves. Geophysical Research Letters, 2014, 41, 7419-7426.	1.5	66
111	Dipolarizing flux bundles in the cisâ€geosynchronous magnetosphere: Relationship between electric fields and energetic particle injections. Journal of Geophysical Research: Space Physics, 2016, 121, 1362-1376.	0.8	66
112	In Situ Observations of a Magnetosheath Highâ€Speed Jet Triggering Magnetopause Reconnection. Geophysical Research Letters, 2018, 45, 1732-1740.	1.5	66
113	On the force balance around dipolarization fronts within bursty bulk flows. Journal of Geophysical Research, 2011, 116, .	3.3	65
114	Statistical analysis of the plasmaspheric plume at the magnetopause. Journal of Geophysical Research: Space Physics, 2013, 118, 4844-4851.	0.8	65
115	An advanced approach to finding magnetometer zero levels in the interplanetary magnetic field. Measurement Science and Technology, 2008, 19, 055104.	1.4	64
116	Equatorward moving auroral signatures of a flow burst observed prior to auroral onset. Geophysical Research Letters, 2009, 36, .	1.5	64
117	Relations between multiple auroral streamers, pre-onset thin arc formation, and substorm auroral onset. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	64
118	Substorm growth and expansion onset as observed with ideal ground-spacecraft THEMIS coverage. Journal of Geophysical Research, 2011, 116, .	3.3	63
119	Direct observations of a surface eigenmode of the dayside magnetopause. Nature Communications, 2019, 10, 615.	5.8	63
120	Observations of kinetic ballooning/interchange instability signatures in the magnetotail. Geophysical Research Letters, 2012, 39, .	1.5	62
121	Nearâ€Earth injection of MeV electrons associated with intense dipolarization electric fields: Van Allen Probes observations. Geophysical Research Letters, 2015, 42, 6170-6179.	1.5	62
122	Substorm current wedge composition by wedgelets. Geophysical Research Letters, 2015, 42, 1669-1676.	1.5	62
123	Properties of Intense Fieldâ€Aligned Lowerâ€Band Chorus Waves: Implications for Nonlinear Waveâ€Particle Interactions. Journal of Geophysical Research: Space Physics, 2018, 123, 5379-5393.	0.8	62
124	Observational evidence of the generation mechanism for rising-tone chorus. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	61
125	Possible connection of polar cap flows to pre- and post-substorm onset PBIs and streamers. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	61
126	Predominance of ECH wave contribution to diffuse aurora in Earth's outer magnetosphere. Journal of Geophysical Research: Space Physics, 2015, 120, 295-309.	0.8	61

#	Article	IF	Citations
127	Thin current sheet in the substorm late growth phase: Modeling of THEMIS observations. Journal of Geophysical Research, 2009, 114, .	3.3	60
128	Nearâ€Earth initiation of a terrestrial substorm. Journal of Geophysical Research, 2009, 114, .	3.3	60
129	Plasma sheet thickness during a bursty bulk flow reversal. Journal of Geophysical Research, 2010, 115, .	3.3	60
130	Pressure and entropy changes in the flowâ€braking region during magnetic field dipolarization. Journal of Geophysical Research, 2010, 115, .	3.3	60
131	THEMIS observations of ULF wave excitation in the nightside plasma sheet during sudden impulse events. Journal of Geophysical Research: Space Physics, 2013, 118, 284-298.	0.8	59
132	Characterizing the dayside magnetosheath using energetic neutral atoms: IBEX and THEMIS observations. Journal of Geophysical Research: Space Physics, 2013, 118, 3126-3137.	0.8	59
133	THEMIS observations of tangential discontinuityâ€driven foreshock bubbles. Geophysical Research Letters, 2015, 42, 7860-7866.	1.5	59
134	Electron Nonlinear Resonant Interaction With Short and Intense Parallel Chorus Wave Packets. Journal of Geophysical Research: Space Physics, 2018, 123, 4979-4999.	0.8	59
135	Timing and localization of ionospheric signatures associated with substorm expansion phase onset. Journal of Geophysical Research, 2009, 114, .	3.3	58
136	Coordinated SuperDARN THEMIS ASI observations of mesoscale flow bursts associated with auroral streamers. Journal of Geophysical Research: Space Physics, 2014, 119, 142-150.	0.8	58
137	New evidence for generation mechanisms of discrete and hissâ€like whistler mode waves. Geophysical Research Letters, 2014, 41, 4805-4811.	1.5	58
138	Case studies of mirror-mode structures observed by THEMIS in the near-Earth tail during substorms. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	56
139	Chorus wave scattering responsible for the Earth's dayside diffuse auroral precipitation: A detailed case study. Journal of Geophysical Research: Space Physics, 2014, 119, 897-908.	0.8	56
140	On the origin of pressure and magnetic perturbations ahead of dipolarization fronts. Journal of Geophysical Research: Space Physics, 2014, 119, 211-220.	0.8	56
141	Extensive electron transport and energization via multiple, localized dipolarizing flux bundles. Journal of Geophysical Research: Space Physics, 2017, 122, 5059-5076.	0.8	56
142	Azimuthal plasma pressure gradient in quiet time plasma sheet. Geophysical Research Letters, 2009, 36, .	1.5	55
143	Testing a twoâ€loop pattern of the substorm current wedge (SCW2L). Journal of Geophysical Research: Space Physics, 2014, 119, 947-963.	0.8	55
144	Relativistic Electrons Produced by Foreshock Disturbances Observed Upstream of Earth's Bow Shock. Physical Review Letters, 2016, 117, 215101.	2.9	55

#	Article	IF	CITATIONS
145	THEMIS multiâ€spacecraft observations of magnetosheath plasma penetration deep into the dayside lowâ€latitude magnetosphere for northward and strong B _y IMF. Geophysical Research Letters, 2008, 35, .	1.5	54
146	Current carriers near dipolarization fronts in the magnetotail: A THEMIS event study. Journal of Geophysical Research, $2011,116,116$	3.3	54
147	Global distribution of electrostatic electron cyclotron harmonic waves observed on THEMIS. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	54
148	Threeâ€dimensional lunar wake reconstructed from ARTEMIS data. Journal of Geophysical Research: Space Physics, 2014, 119, 5220-5243.	0.8	54
149	Wave normal angles of whistler mode chorus rising and falling tones. Journal of Geophysical Research: Space Physics, 2014, 119, 9567-9578.	0.8	54
150	Geoeffective jets impacting the magnetopause are very common. Journal of Geophysical Research: Space Physics, 2016, 121, 3240-3253.	0.8	54
151	Characteristic energy range of electron scattering due to plasmaspheric hiss. Journal of Geophysical Research: Space Physics, 2016, 121, 11,737.	0.8	54
152	Statistical properties of substorm auroral onset beads/rays. Journal of Geophysical Research: Space Physics, 2016, 121, 8661-8676.	0.8	54
153	Optical characterization of the growth and spatial structure of a substorm onset arc. Journal of Geophysical Research, 2010, 115 , .	3. 3	53
154	Nonlinear Electron Interaction With Intense Chorus Waves: Statistics of Occurrence Rates. Geophysical Research Letters, 2019, 46, 7182-7190.	1.5	53
155	The THEMIS Mission., 2009, , 5-34.		52
156	THEMIS observation of chorus elements without a gap at half the gyrofrequency. Journal of Geophysical Research, 2012, 117 , .	3.3	52
157	Spatial distributions of ion pitch angle anisotropy in the nearâ€Earth magnetosphere and tail plasma sheet. Journal of Geophysical Research: Space Physics, 2013, 118, 244-255.	0.8	52
158	A unified approach to inner magnetospheric state prediction. Journal of Geophysical Research: Space Physics, 2016, 121, 2423-2430.	0.8	52
159	Spatial Extent and Temporal Correlation of Chorus and Hiss: Statistical Results From Multipoint THEMIS Observations. Journal of Geophysical Research: Space Physics, 2018, 123, 8317-8330.	0.8	52
160	Origin of two-band chorus in the radiation belt of Earth. Nature Communications, 2019, 10, 4672.	5.8	52
161	Global properties of magnetotail current sheet flapping: THEMIS perspectives. Annales Geophysicae, 2009, 27, 319-328.	0.6	51
162	Surface waves and field line resonances: A THEMIS case study. Journal of Geophysical Research, 2009, 114, .	3.3	51

#	Article	IF	CITATIONS
163	Preonset time sequence of auroral substorms: Coordinated observations by allâ€sky imagers, satellites, and radars. Journal of Geophysical Research, 2010, 115, .	3.3	51
164	Energy limits of electron acceleration in the plasma sheet during substorms: A case study with the Magnetospheric Multiscale (MMS) mission. Geophysical Research Letters, 2016, 43, 7785-7794.	1.5	51
165	A neural network model of threeâ€dimensional dynamic electron density in the inner magnetosphere. Journal of Geophysical Research: Space Physics, 2017, 122, 9183-9197.	0.8	51
166	Substorm onset by new plasma intrusion: THEMIS spacecraft observations. Journal of Geophysical Research, 2010, 115 , .	3.3	50
167	Substorm triggering by poleward boundary intensification and related equatorward propagation. Journal of Geophysical Research, 2011, 116, .	3.3	50
168	Transient electron precipitation during oscillatory BBF braking: THEMIS observations and theoretical estimates. Journal of Geophysical Research: Space Physics, 2013, 118, 3065-3076.	0.8	50
169	Simulation of energyâ€dependent electron diffusion processes in the Earth's outer radiation belt. Journal of Geophysical Research: Space Physics, 2016, 121, 4217-4231.	0.8	50
170	Magnetospheric Signatures of STEVE: Implications for the Magnetospheric Energy Source and Interhemispheric Conjugacy. Geophysical Research Letters, 2019, 46, 5637-5644.	1.5	50
171	Dipolarization fronts and associated auroral activities: 2. Acceleration of ions and their subsequent behavior. Journal of Geophysical Research, 2012, 117, .	3.3	48
172	First evidence for chorus at a large geocentric distance as a source of plasmaspheric hiss: Coordinated THEMIS and Van Allen Probes observation. Geophysical Research Letters, 2015, 42, 241-248.	1.5	48
173	Hall effect control of magnetotail dawnâ€dusk asymmetry: A threeâ€dimensional global hybrid simulation. Journal of Geophysical Research: Space Physics, 2016, 121, 11,882.	0.8	48
174	Phase Decoherence Within Intense Chorus Wave Packets Constrains the Efficiency of Nonlinear Resonant Electron Acceleration. Geophysical Research Letters, 2020, 47, e2020GL089807.	1.5	48
175	Toward adapted timeâ€dependent magnetospheric models: A simple approach based on tuning the standard model. Journal of Geophysical Research, 2009, 114, .	3.3	47
176	ARTEMIS Science Objectives. Space Science Reviews, 2011, 165, 59-91.	3.7	47
177	Modulation of plasmaspheric hiss intensity by thermal plasma density structure. Geophysical Research Letters, 2012, 39, .	1.5	47
178	Electromagnetic ion cyclotron rising tone emissions observed by THEMIS probes outside the plasmapause. Journal of Geophysical Research: Space Physics, 2014, 119, 1874-1886.	0.8	47
179	Evolution of Electron Distribution Driven by Nonlinear Resonances With Intense Fieldâ€Aligned Chorus Waves. Journal of Geophysical Research: Space Physics, 2018, 123, 8149-8169.	0.8	47
180	The ELFIN Mission. Space Science Reviews, 2020, 216, 103.	3.7	47

#	Article	IF	CITATIONS
181	Near-Earth magnetotail reconnection powers space storms. Nature Physics, 2020, 16, 317-321.	6.5	47
182	Characterization of ULF pulsations by THEMIS. Geophysical Research Letters, 2009, 36, .	1.5	46
183	Solar wind influence on Pc4 and Pc5 ULF wave activity in the inner magnetosphere. Journal of Geophysical Research, 2010, 115, .	3.3	46
184	Outer radiation belt boundary location relative to the magnetopause: Implications for magnetopause shadowing. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	46
185	Whistler and Electron Firehose Instability Control of Electron Distributions in and Around Dipolarizing Flux Bundles. Geophysical Research Letters, 2018, 45, 9380-9389.	1.5	46
186	Characteristics of pseudobreakups and substorms observed in the ionosphere, at the geosynchronous orbit, and in the midtail. Journal of Geophysical Research, 1999, 104, 12263-12287.	3.3	45
187	Response to Comment on "Tail Reconnection Triggering Substorm Onset― Science, 2009, 324, 1391-1391.	6.0	45
188	Lunar pickup ions observed by ARTEMIS: Spatial and temporal distribution and constraints on species and source locations. Journal of Geophysical Research, 2012, 117, .	3.3	45
189	On the relationship between bursty flows, current disruption and substorms. Geophysical Research Letters, 1999, 26, 2841-2844.	1.5	44
190	THEMIS observations of substorms on 26 February 2008 initiated by magnetotail reconnection. Journal of Geophysical Research, 2010, 115, .	3.3	44
191	First Results from ARTEMIS, a New Two-Spacecraft Lunar Mission: Counter-Streaming Plasma Populations in the Lunar Wake. Space Science Reviews, 2011, 165, 93-107.	3.7	44
192	First lunar wake passage of ARTEMIS: Discrimination of wake effects and solar wind fluctuations by 3D hybrid simulations. Planetary and Space Science, 2011, 59, 661-671.	0.9	44
193	Dayside Magnetospheric and Ionospheric Responses to a Foreshock Transient on 25 June 2008: 2. 2â€D Evolution Based on Dayside Auroral Imaging. Journal of Geophysical Research: Space Physics, 2018, 123, 6347-6359.	0.8	44
194	Ionospheric localisation and expansion of longâ€period Pi1 pulsations at substorm onset. Geophysical Research Letters, 2008, 35, .	1.5	43
195	Multisatellite observations of a giant pulsation event. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	43
196	Emergence of the active magnetotail plasma sheet boundary from transient, localized ion acceleration. Journal of Geophysical Research, 2012, 117, .	3.3	43
197	Development and validation of inversion technique for substorm current wedge using ground magnetic field data. Journal of Geophysical Research: Space Physics, 2014, 119, 1909-1924.	0.8	43
198	Energetic atomic and molecular ions of ionospheric origin observed in distant magnetotail flow-reversal events. Geophysical Research Letters, 1994, 21, 3023-3026.	1.5	42

#	Article	IF	CITATIONS
199	Determination of the substorm initiation region from a major conjunction interval of THEMIS satellites. Journal of Geophysical Research, 2008, 113 , .	3.3	42
200	Analysis of radiation belt energetic electron phase space density using THEMIS SST measurements: Cross-satellite calibration and a case study. Journal of Geophysical Research, 2011, 116, .	3.3	42
201	ARTEMIS Mission Design. Space Science Reviews, 2011, 165, 27-57.	3.7	42
202	Multipoint observations of the structure and evolution of foreshock bubbles and their relation to hot flow anomalies. Journal of Geophysical Research: Space Physics, 2016, 121, 5489-5509.	0.8	42
203	Multipoint Observations of Energetic Particle Injections and Substorm Activity During a Conjunction Between Magnetospheric Multiscale (MMS) and Van Allen Probes. Journal of Geophysical Research: Space Physics, 2017, 122, 11,481.	0.8	42
204	Substorm evolution as revealed by THEMIS satellites and a global MHD simulation. Journal of Geophysical Research, 2009, 114, .	3.3	41
205	Electromagnetic waves on ion gyroâ€radii scales across the magnetopause. Geophysical Research Letters, 2011, 38, .	1.5	41
206	Kinetic ballooning/interchange instability in a bent plasma sheet. Journal of Geophysical Research, 2012, 117, .	3.3	41
207	Statistical study of particle acceleration in the core of foreshock transients. Journal of Geophysical Research: Space Physics, 2017, 122, 7197-7208.	0.8	41
208	Impacts of Magnetosheath Highâ€Speed Jets on the Magnetosphere and Ionosphere Measured by Optical Imaging and Satellite Observations. Journal of Geophysical Research: Space Physics, 2018, 123, 4879-4894.	0.8	41
209	Magnetic island formation between largeâ€scale flow vortices at an undulating postnoon magnetopause for northward interplanetary magnetic field. Journal of Geophysical Research, 2009, 114, .	3.3	40
210	Waveletâ€based ULF wave diagnosis of substorm expansion phase onset. Journal of Geophysical Research, 2009, 114, .	3.3	40
211	ARTEMIS observations of lunar pickâ€up ions in the terrestrial magnetotail lobes. Geophysical Research Letters, 2012, 39, .	1.5	40
212	Formation of substorm Pi2: A coherent response to auroral streamers and currents. Journal of Geophysical Research, 2012, 117, .	3.3	40
213	Substorm onset and expansion phase intensification precursors seen in polar cap patches and arcs. Journal of Geophysical Research: Space Physics, 2013, 118, 2034-2042.	0.8	40
214	Contemporaneous EMIC and whistler mode waves: Observations and consequences for MeV electron loss. Geophysical Research Letters, 2017, 44, 8113-8121.	1.5	40
215	Survival of flux transfer event (FTE) flux ropes far along the tail magnetopause. Journal of Geophysical Research, 2012, 117, .	3.3	39
216	Observation and modeling of the injection observed by THEMIS and LANL satellites during the 23 March 2007 substorm event. Journal of Geophysical Research, 2009, 114 , .	3.3	38

#	Article	IF	CITATIONS
217	Fast earthward flows, electron cyclotron harmonic waves, and diffuse auroras: Conjunctive observations and a synthesized scenario. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	38
218	Polar UVI and THEMIS GMAG observations of the ionospheric response to a hot flow anomaly. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73, 137-145.	0.6	38
219	On the relationship of electrostatic cyclotron harmonic emissions with electron injections and dipolarization fronts. Journal of Geophysical Research: Space Physics, 2014, 119, 2536-2549.	0.8	38
220	Ultrarelativistic electron butterfly distributions created by parallel acceleration due to magnetosonic waves. Journal of Geophysical Research: Space Physics, 2016, 121, 3212-3222.	0.8	38
221	Periodic Excitation of Chorus and ECH Waves Modulated by Ultralow Frequency Compressions. Journal of Geophysical Research: Space Physics, 2019, 124, 8535-8550.	0.8	38
222	Observations of a new foreshock region upstream of a foreshock bubble's shock. Geophysical Research Letters, 2016, 43, 4708-4715.	1.5	37
223	Fermi acceleration of electrons inside foreshock transient cores. Journal of Geophysical Research: Space Physics, 2017, 122, 9248-9263.	0.8	37
224	Utilizing the Heliophysics/Geospace System Observatory to Understand Particle Injections: Their Scale Sizes and Propagation Directions. Journal of Geophysical Research: Space Physics, 2019, 124, 5584-5609.	0.8	37
225	Turbulence and Particle Acceleration in Collisionless Magnetic Reconnection: Effects of Temperature Inhomogeneity across Pre-reconnection Current Sheet. Astrophysical Journal, 2019, 878, 109.	1.6	37
226	Rapid Frequency Variations Within Intense Chorus Wave Packets. Geophysical Research Letters, 2020, 47, e2020GL088853.	1.5	37
227	THEMIS observations of the spatial extent and pressureâ€pulse excitation of field line resonances. Geophysical Research Letters, 2010, 37, .	1.5	36
228	Stopping flow bursts and their role in the generation of the substorm current wedge. Geophysical Research Letters, 2014, 41, 1106-1112.	1.5	36
229	Space weather conditions during the Galaxy 15 spacecraft anomaly. Space Weather, 2015, 13, 484-502.	1.3	36
230	Properties of current sheet thinning at $\langle i \rangle \times \langle i \rangle$ â^1/4â^' 10 to â^'12Â $\langle i \rangle \times \langle i \rangle \times$	0.8	36
231	Longâ€Lasting Poloidal ULF Waves Observed by Multiple Satellites and Highâ€Latitude SuperDARN Radars. Journal of Geophysical Research: Space Physics, 2018, 123, 8422-8438.	0.8	36
232	Reconnection With Magnetic Flux Pileup at the Interface of Converging Jets at the Magnetopause. Geophysical Research Letters, 2019, 46, 1937-1946.	1.5	36
233	Flux transport, dipolarization, and current sheet evolution during a double-onset substorm. Journal of Geophysical Research, $2011, 116, \ldots$	3.3	35
234	Comparison between theory and observation of the frequency sweep rates of equatorial rising tone chorus. Geophysical Research Letters, 2012, 39, .	1.5	35

#	Article	IF	CITATIONS
235	Diamagnetic oscillations ahead of stopped dipolarization fronts. Journal of Geophysical Research: Space Physics, 2014, 119, 1643-1657.	0.8	35
236	Statistical results describing the bandwidth and coherence coefficient of whistler mode waves using THEMIS waveform data. Journal of Geophysical Research: Space Physics, 2014, 119, 8992-9003.	0.8	35
237	Subpacket structures in EMIC rising tone emissions observed by the THEMIS probes. Journal of Geophysical Research: Space Physics, 2015, 120, 7318-7330.	0.8	35
238	On the Acceleration and Anisotropy of Ions Within Magnetotail Dipolarizing Flux Bundles. Journal of Geophysical Research: Space Physics, 2018, 123, 429-442.	0.8	35
239	Modeling a forceâ€free flux transfer event probed by multiple Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft. Journal of Geophysical Research, 2008, 113, .	3.3	34
240	Multipoint observation of fast mode waves trapped in the dayside plasmasphere. Journal of Geophysical Research, 2010, 115 , .	3.3	34
241	Observations and modeling of EMIC wave properties in the presence of multiple ion species as function of magnetic local time. Journal of Geophysical Research: Space Physics, 2014, 119, 8942-8970.	0.8	34
242	On the signatures of magnetic islands and multiple X-lines in the solar wind as observed by ARTEMIS and WIND. Plasma Physics and Controlled Fusion, 2014, 56, 064008.	0.9	34
243	Azimuthal flow bursts in the inner plasma sheet and possible connection with SAPS and plasma sheet earthward flow bursts. Journal of Geophysical Research: Space Physics, 2015, 120, 5009-5021.	0.8	34
244	Erosion and refilling of the plasmasphere during a geomagnetic storm modeled by a neural network. Journal of Geophysical Research: Space Physics, 2017, 122, 7118-7129.	0.8	34
245	THEMIS observations of a secondary magnetic island within the Hall electromagnetic field region at the magnetopause. Geophysical Research Letters, 2010, 37, .	1.5	33
246	On the radial force balance in the quiet time magnetotail current sheet. Journal of Geophysical Research: Space Physics, 2016, 121, 4017-4026.	0.8	33
247	Kinetics of subâ€ion scale magnetic holes in the nearâ€Earth plasma sheet. Journal of Geophysical Research: Space Physics, 2017, 122, 10,304.	0.8	33
248	Formation of Dawnâ€Dusk Asymmetry in Earth's Magnetotail Thin Current Sheet: A Threeâ€Dimensional Particleâ€Inâ€Cell Simulation. Journal of Geophysical Research: Space Physics, 2018, 123, 2801-2814.	0.8	33
249	A model of electromagnetic electron phase-space holes and its application. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	32
250	Global energy transfer during a magnetospheric field line resonance. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	32
251	Near-Earth plasma sheet azimuthal pressure gradient and associated auroral development soon before substorm onset. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	32
252	Distinction between auroral substorm onset and traditional ground magnetic onset signatures. Journal of Geophysical Research: Space Physics, 2013, 118, 4080-4092.	0.8	32

#	Article	IF	CITATIONS
253	Excitation of dayside chorus waves due to magnetic field line compression in response to interplanetary shocks. Journal of Geophysical Research: Space Physics, 2015, 120, 8327-8338.	0.8	32
254	Crossâ€tail expansion of dipolarizing flux bundles. Journal of Geophysical Research: Space Physics, 2015, 120, 2516-2530.	0.8	32
255	On the generation of magnetic dips ahead of advancing dipolarization fronts. Geophysical Research Letters, 2015, 42, 4256-4262.	1.5	32
256	Relativistic electrons generated at Earth's quasi-parallel bow shock. Science Advances, 2019, 5, eaaw1368.	4.7	32
257	The Hall Electric Field in Earth's Magnetotail Thin Current Sheet. Journal of Geophysical Research: Space Physics, 2019, 124, 1052-1062.	0.8	32
258	Evidence that crater flux transfer events are initial stages of typical flux transfer events. Journal of Geophysical Research, 2010, 115, .	3.3	31
259	Magnetic flux transfer in the 5 April 2010 Galaxy 15 substorm: an unprecedented observation. Annales Geophysicae, 2011, 29, 619-622.	0.6	31
260	Lunar precursor effects in the solar wind and terrestrial magnetosphere. Journal of Geophysical Research, 2012, 117, .	3.3	31
261	Statistical study of global modes outside the plasmasphere. Journal of Geophysical Research: Space Physics, 2013, 118, 804-822.	0.8	31
262	Multispacecraft observations of fundamental poloidal waves without ground magnetic signatures. Journal of Geophysical Research: Space Physics, 2013, 118, 4319-4334.	0.8	31
263	Evidence of kinetic Alfvén eigenmode in the nearâ€Earth magnetotail during substorm expansion phase. Journal of Geophysical Research: Space Physics, 2016, 121, 4316-4330.	0.8	31
264	Substorm expansion triggered by a sudden impulse front propagating from the dayside magnetopause. Journal of Geophysical Research, 2009, 114 , .	3.3	30
265	Multispacecraft observations of a foreshock-induced magnetopause disturbance exhibiting distinct plasma flows and an intense density compression. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	30
266	Magnetic reconnection X-line retreat associated with dipolarization of the Earth's magnetosphere. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	30
267	PENGUIn/AGO and THEMIS conjugate observations of whistler mode chorus waves in the dayside uniform zone under steady solar wind and quiet geomagnetic conditions. Journal of Geophysical Research, 2012, 117, .	3.3	30
268	Oscillatory flow braking in the magnetotail: THEMIS statistics. Geophysical Research Letters, 2013, 40, 2505-2510.	1.5	30
269	Ion Acceleration Inside Foreshock Transients. Journal of Geophysical Research: Space Physics, 2018, 123, 163-178.	0.8	30
270	Formation and Topology of Foreshock Bubbles. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028058.	0.8	30

#	Article	IF	CITATIONS
271	Estimation of magnetic field mapping accuracy using the pulsating aurora-chorus connection. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	29
272	Observations of plasma waves in the colliding jet region of a magnetic flux rope flanked by two active X lines at the subsolar magnetopause. Journal of Geophysical Research: Space Physics, 2014, 119, 6256-6272.	0.8	29
273	Empirical modeling of 3â€D forceâ€balanced plasma and magnetic field structures during substorm growth phase. Journal of Geophysical Research: Space Physics, 2015, 120, 6496-6513.	0.8	29
274	A statistical study of EMIC rising and falling tone emissions observed by THEMIS. Journal of Geophysical Research: Space Physics, 2016, 121, 8374-8391.	0.8	29
275	The Characteristic Response of Whistler Mode Waves to Interplanetary Shocks. Journal of Geophysical Research: Space Physics, 2017, 122, 10,047.	0.8	29
276	Observations of plasma vortices in the vicinity of flow-braking: a case study. Annales Geophysicae, 2009, 27, 3009-3017.	0.6	28
277	Global Propagation of Magnetospheric Pc5 ULF Waves Driven by Foreshock Transients. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028411.	0.8	28
278	Tailward progression of magnetotail acceleration centers: Relationship to substorm current wedge. Journal of Geophysical Research, 1996, 101, 24599-24619.	3.3	27
279	Evidence that solar wind fluctuations substantially affect global convection and substorm occurrence. Journal of Geophysical Research, 2009, 114, .	3.3	27
280	Estimation of magnetosphereâ€ionosphere mapping accuracy using isotropy boundary and THEMIS observations. Journal of Geophysical Research, 2010, 115, .	3.3	27
281	Observations of a Pc5 global (cavity/waveguide) mode outside the plasmasphere by THEMIS. Journal of Geophysical Research, 2012, 117, .	3.3	27
282	Kinetic instabilities in the lunar wake: ARTEMIS observations. Journal of Geophysical Research, 2012, 117 , .	3.3	27
283	The Origin of Pulsating Aurora: Modulated Whistler Mode Chorus Waves. Geophysical Monograph Series, 0, , 379-388.	0.1	27
284	The 17 March 2013 storm: Synergy of observations related to electric field modes and their ionospheric and magnetospheric Effects. Journal of Geophysical Research: Space Physics, 2016, 121, 10,880.	0.8	27
285	Characteristics of ion distribution functions in dipolarizing flux bundles: Event studies. Journal of Geophysical Research: Space Physics, 2017, 122, 5965-5978.	0.8	27
286	Influence of Auroral Streamers on Rapid Evolution of Ionospheric SAPS Flows. Journal of Geophysical Research: Space Physics, 2017, 122, 12,406.	0.8	27
287	THEMIS satellite observations of hot flow anomalies at Earth's bow shock. Annales Geophysicae, 2017, 35, 443-451.	0.6	27
288	Nonlinear Electrostatic Steepening of Whistler Waves: The Guiding Factors and Dynamics in Inhomogeneous Systems. Geophysical Research Letters, 2018, 45, 2168-2176.	1.5	27

#	Article	IF	CITATIONS
289	Magnetic reconnection in Earth's magnetotail: Energy conversion and its earthward–tailward asymmetry. Physics of Plasmas, 2018, 25, .	0.7	27
290	Drift Resonance of Compressional ULF Waves and Substormâ€Injected Protons From Multipoint THEMIS Measurements. Journal of Geophysical Research: Space Physics, 2018, 123, 9406-9419.	0.8	27
291	On the Kinetic Nature of Solar Wind Discontinuities. Geophysical Research Letters, 2019, 46, 1185-1194.	1.5	27
292	Superfast precipitation of energetic electrons in the radiation belts of the Earth. Nature Communications, 2022, 13, 1611.	5.8	27
293	Timing and location of substorm onsets from THEMIS satellite and ground based observations. Annales Geophysicae, 2009, 27, 2813-2830.	0.6	26
294	On the formation of tilted flux ropes in the Earth's magnetotail observed with ARTEMIS. Journal of Geophysical Research, 2012, 117 , .	3.3	26
295	THEMIS observations and modeling of multiple ion species and EMIC waves: Implications for a vanishing He ⁺ stop band. Journal of Geophysical Research, 2012, 117, .	3.3	26
296	ARTEMIS observations of terrestrial ionospheric molecular ion outflow at the Moon. Geophysical Research Letters, 2016, 43, 6749-6758.	1.5	26
297	In situ evidence of electron energization in the electron diffusion region of magnetotail reconnection. Journal of Geophysical Research: Space Physics, 2016, 121, 1955-1968.	0.8	26
298	Magnetospheric Multiscale (MMS) Observations of Magnetic Reconnection in Foreshock Transients. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027822.	0.8	26
299	A preliminary assessment of energetic ion species in flux ropes/plasmoids in the distant tail. Geophysical Research Letters, 1994, 21, 3019-3022.	1.5	25
300	Orbit Design for the THEMIS Mission. Space Science Reviews, 2008, 141, 61-89.	3.7	25
301	THEMIS observations of duskside compressional Pc5 waves. Journal of Geophysical Research, 2009, 114,	3.3	25
302	Fast tailward flows in the plasma sheet boundary layer during a substorm on 9 March 2008: THEMIS observations. Journal of Geophysical Research, 2011, 116, .	3.3	25
303	Ionospheric response to oscillatory flow braking in the magnetotail. Journal of Geophysical Research: Space Physics, 2013, 118, 1529-1544.	0.8	25
304	Antidipolarization fronts observed by ARTEMIS. Journal of Geophysical Research: Space Physics, 2014, 119, 7181-7198.	0.8	25
305	Evolution of nightside subauroral proton aurora caused by transient plasma sheet flows. Journal of Geophysical Research: Space Physics, 2014, 119, 5295-5304.	0.8	25
306	Coordinated ionospheric observations indicating coupling between preonset flow bursts and waves that lead to substorm onset. Journal of Geophysical Research: Space Physics, 2014, 119, 3333-3344.	0.8	25

#	Article	IF	Citations
307	Extent of ECH wave emissions in the Earth's magnetotail. Journal of Geophysical Research: Space Physics, 2014, 119, 5561-5574.	0.8	25
308	Magnetospheric ULF waves with increasing amplitude related to solar wind dynamic pressure changes: The Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations. Journal of Geophysical Research: Space Physics, 2015, 120, 7179-7190.	0.8	25
309	On the current density reduction ahead of dipolarization fronts. Journal of Geophysical Research: Space Physics, 2016, 121, 4269-4278.	0.8	25
310	Crossâ€scale observations of the 2015 St. Patrick's day storm: THEMIS, Van Allen Probes, and TWINS. Journal of Geophysical Research: Space Physics, 2017, 122, 368-392.	0.8	25
311	Characteristics of the Flank Magnetopause: THEMIS Observations. Journal of Geophysical Research: Space Physics, 2019, 124, 3421-3435.	0.8	25
312	Plasma sheet pressure evolution related to substorms. Journal of Geophysical Research, 2010, 115, .	3.3	24
313	In situ observations of the "preexisting auroral arc―by THEMIS all sky imagers and the FAST spacecraft. Journal of Geophysical Research, 2012, 117, .	3.3	24
314	A multispacecraft event study of Pc5 ultralowâ€frequency waves in the magnetosphere and their external drivers. Journal of Geophysical Research: Space Physics, 2017, 122, 5132-5147.	0.8	24
315	Artificial Neural Networks for Determining Magnetospheric Conditions. , 2018, , 279-300.		24
316	Electron Lifetimes and Diffusion Rates Inferred From ELFIN Measurements at Low Altitude: First Results. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029757.	0.8	24
317	Statistical study of the magnetopause motion: First results from THEMIS. Journal of Geophysical Research, 2009, 114, .	3.3	23
318	Superposed epoch analysis of magnetotail flux transport during substorms observed by THEMIS. Journal of Geophysical Research, 2011, 116, .	3. 3	23
319	Magnetopause surface waves: THEMIS observations compared to MHD theory. Journal of Geophysical Research: Space Physics, 2013, 118, 1483-1499.	0.8	23
320	A statistical study of fundamental toroidal mode standing Alfv \tilde{A} ©n waves using THEMIS ion bulk velocity data. Journal of Geophysical Research: Space Physics, 2015, 120, 6474-6495.	0.8	23
321	Can Enhanced Flux Loading by Highâ€Speed Jets Lead to a Substorm? Multipoint Detection of the Christmas Day Substorm Onset at 08:17 UT, 2015. Journal of Geophysical Research: Space Physics, 2019, 124, 4314-4340.	0.8	23
322	On the Contribution of Dipolarizing Flux Bundles to the Substorm Current Wedge and to Flux and Energy Transport. Journal of Geophysical Research: Space Physics, 2019, 124, 5408-5420.	0.8	23
323	Fine Structure of Chorus Wave Packets: Comparison Between Observations and Wave Generation Models. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029330.	0.8	23
324	The Electric Field Instrument (EFI) for THEMIS. , 2009, , 303-341.		23

#	Article	IF	Citations
325	The THEMIS Magnetic Cleanliness Program. Space Science Reviews, 2008, 141, 171-184.	3.7	22
326	Multipoint in situ and groundâ€based observations during auroral intensifications. Journal of Geophysical Research, 2008, 113, .	3.3	22
327	Statistical study of substorm timing sequence. Journal of Geophysical Research, 2009, 114, .	3.3	22
328	Timing and localization of nearâ€Earth tail and ionospheric signatures during a substorm onset. Journal of Geophysical Research, 2009, 114, .	3.3	22
329	Generation and properties of in vivo flux transfer events. Journal of Geophysical Research, 2012, 117, .	3.3	22
330	A statistical analysis of the association between fast plasma flows and Pi2 pulsations. Journal of Geophysical Research, 2012, 117 , .	3.3	22
331	Properties of lowâ€katitude mantle plasma in the Earth's magnetotail: ARTEMIS observations and global MHD predictions. Journal of Geophysical Research: Space Physics, 2014, 119, 7264-7280.	0.8	22
332	Mars's magnetotail: Nature's current sheet laboratory. Journal of Geophysical Research: Space Physics, 2017, 122, 5404-5417.	0.8	22
333	Nearâ€Earth Reconnection Ejecta at Lunar Distances. Journal of Geophysical Research: Space Physics, 2018, 123, 2736-2744.	0.8	22
334	Kinetic Properties of Solar Wind Discontinuities at 1 AU Observed by ARTEMIS. Journal of Geophysical Research: Space Physics, 2019, 124, 3858-3870.	0.8	22
335	Short Chorus Wave Packets: Generation Within Chorus Elements, Statistics, and Consequences on Energetic Electron Precipitation. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	22
336	Structure, force balance, and evolution of incompressible cross-tail current sheet thinning. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	21
337	Quasiâ€steady, marginally unstable electron cyclotron harmonic wave amplitudes. Journal of Geophysical Research: Space Physics, 2013, 118, 3165-3172.	0.8	21
338	Acceleration of ions by electric field pulses in the inner magnetosphere. Journal of Geophysical Research: Space Physics, 2015, 120, 4628-4640.	0.8	21
339	Ion density and temperature profiles along (<i>X</i> _{GSM}) and across (<i>Z</i> _{GSM}) the magnetotail as observed by THEMIS, Geotail, and ARTEMIS. Journal of Geophysical Research: Space Physics, 2017, 122, 1590-1599.	0.8	21
340	Characteristics of Electron Microburst Precipitation Based on Highâ€Resolution ELFIN Measurements. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	21
341	Magnetopause encounters in the magnetotail at distances of \hat{a}^480 Re. Geophysical Research Letters, 1994, 21, 3007-3010.	1.5	20
342	Ion distributions near the reconnection sites: Comparison between simulations and THEMIS observations. Journal of Geophysical Research, 2009, 114, .	3.3	20

#	Article	IF	Citations
343	Precursor activation and substorm expansion associated with observations of a dipolarization front by Time History of Events and Macroscale Interactions during Substorms (THEMIS). Journal of Geophysical Research, 2010, 115, .	3.3	20
344	ARTEMIS observations of lunar pickup ions: Mass constraints on ion species. Journal of Geophysical Research E: Planets, 2013, 118, 1766-1774.	1.5	20
345	Asymmetric braking and dawnward deflection of dipolarization fronts: Effects of ion reflection. Geophysical Research Letters, 2014, 41, 6994-7001.	1.5	20
346	Period and damping factor of <i>Pi><i>i>i</i><p< i=""><i>i>2 pulsations during oscillatory flow braking in the magnetotail. Journal of Geophysical Research: Space Physics, 2014, 119, 4512-4520.</i></p<></i>	0.8	20
347	Electron and ion edges and the associated magnetic topology of the reconnecting magnetopause. Journal of Geophysical Research: Space Physics, 2015, 120, 9294-9306.	0.8	20
348	An interpretation of spacecraft and ground based observations of multiple omega band events. Journal of Atmospheric and Solar-Terrestrial Physics, 2015, 133, 185-204.	0.6	20
349	In situ evidence of breaking the ion frozen-in condition via the non-gyrotropic pressure effect in magnetic reconnection. Annales Geophysicae, 2015, 33, 1147-1153.	0.6	20
350	Contribution of ion reflection to the energy budgets of dipolarization fronts. Geophysical Research Letters, 2016, 43, 493-500.	1.5	20
351	EMIC Wave Events During the Four GEM QARBM Challenge Intervals. Journal of Geophysical Research: Space Physics, 2018, 123, 6394-6423.	0.8	20
352	The 2â€D Structure of Foreshockâ€Driven Field Line Resonances Observed by THEMIS Satellite and Groundâ€Based Imager Conjunctions. Journal of Geophysical Research: Space Physics, 2019, 124, 6792-6811.	0.8	20
353	Energy Transport by Whistler Waves Around Dipolarizing Flux Bundles. Geophysical Research Letters, 2019, 46, 11718-11727.	1.5	20
354	Multiple intensifications inside the auroral bulge and their association with plasma sheet activities. Journal of Geophysical Research, 2008, 113 , .	3.3	19
355	Simultaneous THEMIS observations in the nearâ€ŧail portion of the inner and outer plasma sheet flux tubes at substorm onset. Journal of Geophysical Research, 2008, 113, .	3.3	19
356	Evolution of chorus waves and their source electrons during storms driven by corotating interaction regions. Journal of Geophysical Research, 2012, 117, .	3.3	19
357	Extremely fieldâ€aligned cool electrons in the dayside outer magnetosphere. Geophysical Research Letters, 2017, 44, 44-51.	1.5	19
358	Ion dynamics in magnetotail reconnection in the presence of density asymmetry. Journal of Geophysical Research: Space Physics, 2017, 122, 2010-2023.	0.8	19
359	The Evolution of a Pitchâ€Angle "Biteâ€Out―Scattering Signature Caused by EMIC Wave Activity: A Case Study. Journal of Geophysical Research: Space Physics, 2019, 124, 5042-5055.	0.8	19
360	Energy Modulations of Magnetospheric Ions Induced by Foreshock Transientâ€Driven Ultralowâ€Frequency Waves. Geophysical Research Letters, 2021, 48, e2021GL093913.	1.5	19

#	Article	IF	CITATIONS
361	Ducted Chorus Waves Cause Subâ€Relativistic and Relativistic Electron Microbursts. Geophysical Research Letters, 2022, 49, .	1.5	19
362	Relativistic Electron Precipitation Driven by Nonlinear Resonance With Whistlerâ€Mode Waves. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	19
363	THEMIS ground-space observations during the development of auroral spirals. Annales Geophysicae, 2009, 27, 4317-4332.	0.6	18
364	THEMIS observations of the nearâ€Earth plasma sheet during a substorm. Journal of Geophysical Research, 2009, 114, .	3.3	18
365	Midnight sector observations of auroral omega bands. Journal of Geophysical Research, $2011, 116, \ldots$	3.3	18
366	Outward expansion of the lunar wake: ARTEMIS observations. Geophysical Research Letters, 2012, 39, .	1.5	18
367	Observations of kinetic Alfvén waves by THEMIS near a substorm onset. Science Bulletin, 2012, 57, 1429-1435.	1.7	18
368	Conjugate observations of flow diversion in the magnetotail and auroral arc extension in the ionosphere. Journal of Geophysical Research: Space Physics, 2013, 118, 4811-4816.	0.8	18
369	lonospheric flow structures associated with auroral beading at substorm auroral onset. Journal of Geophysical Research: Space Physics, 2014, 119, 9150-9159.	0.8	18
370	Magnetic mapping effects of substorm currents leading to auroral poleward expansion and equatorward retreat. Journal of Geophysical Research: Space Physics, 2015, 120, 253-265.	0.8	18
371	Storm time current distribution in the inner equatorial magnetosphere: THEMIS observations. Journal of Geophysical Research: Space Physics, 2016, 121, 5250-5259.	0.8	18
372	Electron currents supporting the near-Earth magnetotail during current sheet thinning. Geophysical Research Letters, 2017, 44, 5-11.	1.5	18
373	Ion hole formation and nonlinear generation of electromagnetic ion cyclotron waves: THEMIS observations. Geophysical Research Letters, 2017, 44, 8730-8738.	1.5	18
374	Spreading Speed of Magnetopause Reconnection Xâ€Lines Using Groundâ€Satellite Coordination. Geophysical Research Letters, 2018, 45, 80-89.	1.5	18
375	Nearâ€Earth Solar Wind: Plasma Characteristics From ARTEMIS Measurements. Journal of Geophysical Research: Space Physics, 2018, 123, 9955-9962.	0.8	18
376	Dynamics of Intense Currents in the Solar Wind. Astrophysical Journal, 2018, 859, 95.	1.6	18
377	Effects of Crossâ€Sheet Density and Temperature Inhomogeneities on Magnetotail Reconnection. Geophysical Research Letters, 2019, 46, 28-36.	1.5	18
378	AME: A Cross-Scale Constellation of CubeSats to Explore Magnetic Reconnection in the Solar–Terrestrial Relation. Frontiers in Physics, 2020, 8, .	1.0	18

#	Article	IF	CITATIONS
379	Formation of Foreshock Transients and Associated Secondary Shocks. Astrophysical Journal, 2020, 901, 73.	1.6	18
380	A simulation study of particle energization observed by THEMIS spacecraft during a substorm. Journal of Geophysical Research, 2009, 114 , .	3.3	17
381	On the formation of preâ€onset azimuthal pressure gradient in the nearâ€Earth plasma sheet. Journal of Geophysical Research, 2012, 117, .	3.3	17
382	Westward traveling surges: Sliding along boundary arcs and distinction from onset arc brightening. Journal of Geophysical Research: Space Physics, 2013, 118, 7643-7653.	0.8	17
383	On the azimuthal size of flux ropes near lunar orbit. Journal of Geophysical Research: Space Physics, 2013, 118, 4415-4424.	0.8	17
384	Azimuthal extent and properties of midtail plasmoids from twoâ€point ARTEMIS observations at the Earthâ€Moon Lagrange points. Journal of Geophysical Research: Space Physics, 2014, 119, 1781-1796.	0.8	17
385	Frequency variability of standing Alfv \tilde{A} waves excited by fast mode resonances in the outer magnetosphere. Geophysical Research Letters, 2015, 42, 10,150.	1.5	17
386	Alfv \tilde{A} ©n wings in the lunar wake: The role of pressure gradients. Journal of Geophysical Research: Space Physics, 2016, 121, 10,698.	0.8	17
387	Precipitation of MeV and Subâ€MeV Electrons Due to Combined Effects of EMIC and ULF Waves. Journal of Geophysical Research: Space Physics, 2019, 124, 7923-7935.	0.8	17
388	Magnetospheric Conditions for STEVE and SAID: Particle Injection, Substorm Surge, and Fieldâ€Aligned Currents. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027782.	0.8	17
389	Global and local processes of thin current sheet formation during substorm growth phase. Journal of Atmospheric and Solar-Terrestrial Physics, 2021, 220, 105671.	0.6	17
390	The THEMIS Array of Ground-based Observatories forÂthe Study of Auroral Substorms., 2009,, 357-387.		17
391	The ARTEMIS Mission., 2010,, 3-25.		17
392	Role of Ducting in Relativistic Electron Loss by Whistlerâ€Mode Wave Scattering. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029851.	0.8	17
393	Tailward energetic ion streams observed at $\hat{a}^1/4100$ REby GEOTAIL-EPIC associated with geomagnetic activity intensification. Geophysical Research Letters, 1994, 21, 3015-3018.	1.5	16
394	THEMIS observation of a substorm event on 04:35, 22 February 2008. Annales Geophysicae, 2009, 27, 1831-1841.	0.6	16
395	Enhanced transport across entire length of plasma sheet boundary field lines leading to substorm onset. Journal of Geophysical Research, 2010, 115, .	3.3	16
396	Global magnetospheric response to an interplanetary shock: THEMIS observations. Annales Geophysicae, 2012, 30, 379-387.	0.6	16

#	Article	IF	Citations
397	Coordinated THEMIS spacecraft and allâ€sky imager observations of interplanetary shock effects on plasma sheet flow bursts, poleward boundary intensifications, and streamers. Journal of Geophysical Research: Space Physics, 2013, 118, 3346-3356.	0.8	16
398	Tail reconnection region versus auroral activity inferred from conjugate ARTEMIS plasma sheet flow and auroral observations. Journal of Geophysical Research: Space Physics, 2013, 118, 5758-5766.	0.8	16
399	Interplanetary shock–induced current sheet disturbances leading to auroral activations: THEMIS observations. Journal of Geophysical Research: Space Physics, 2013, 118, 3173-3187.	0.8	16
400	Three-dimensional current systems and ionospheric effects associated with small dipolarization fronts. Journal of Geophysical Research: Space Physics, 2015, 120, 3739-3757.	0.8	16
401	On the plasma sheet dependence on solar wind and substorms and its role in magnetosphere-ionosphere coupling. Earth, Planets and Space, 2015, 67, .	0.9	16
402	Ultralow Frequency Waves Deep Inside the Inner Magnetosphere Driven by Dipolarizing Flux Bundles. Journal of Geophysical Research: Space Physics, 2017, 122, 10,112.	0.8	16
403	The THEMIS ESA Plasma Instrument and In-flight Calibration. , 2009, , 277-302.		16
404	Transport and loss of the inner plasma sheet electrons: THEMIS observations. Journal of Geophysical Research, 2011, 116, .	3.3	15
405	lonospheric convection signatures of tail fast flows during substorms and Poleward Boundary Intensifications (PBI). Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	15
406	Event study combining magnetospheric and ionospheric perspectives of the substorm current wedge modeling. Journal of Geophysical Research: Space Physics, 2014, 119, 9714-9728.	0.8	15
407	Current reduction in a pseudoâ€breakup event: THEMIS observations. Journal of Geophysical Research: Space Physics, 2014, 119, 8178-8187.	0.8	15
408	Momentum transfer from solar wind to interplanetary field enhancements inferred from magnetic field draping signatures. Geophysical Research Letters, 2015, 42, 1640-1645.	1.5	15
409	Multipoint spacecraft observations of long-lasting poloidal Pc4 pulsations in the dayside magnetosphere on 1–2 May 2014. Annales Geophysicae, 2016, 34, 985-998.	0.6	15
410	Investigation of triggering of poleward moving auroral forms using satelliteâ€imager coordinated observations. Journal of Geophysical Research: Space Physics, 2016, 121, 10,929.	0.8	15
411	Effects of electron pressure anisotropy on current sheet configuration. Physics of Plasmas, 2016, 23, .	0.7	15
412	Mesoscale <i>F</i> Region Neutral Winds Associated With Quasiâ€steady and Transient Nightside Auroral Forms. Journal of Geophysical Research: Space Physics, 2018, 123, 7968-7984.	0.8	15
413	Dynamics of Auroral Precipitation Boundaries Associated With STEVE and SAID. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028067.	0.8	15
414	Statistical visualization of the Earth's magnetotail and the implied mechanism of substorm triggering based on superposed-epoch analysis of THEMIS data. Annales Geophysicae, 2014, 32, 99-111.	0.6	15

#	Article	IF	CITATIONS
415	Reconstruction of a flux transfer event based on observations from five THEMIS satellites. Journal of Geophysical Research, 2008, 113 , .	3.3	14
416	First application of a Petschekâ€ŧype reconnection model with timeâ€varying reconnection rate to THEMIS observations. Journal of Geophysical Research, 2009, 114, .	3.3	14
417	A comparison of THEMIS Pi2 observations near the dawn and dusk sectors in the inner magnetosphere. Journal of Geophysical Research, 2010, 115, .	3.3	14
418	Observations and modeling of forward and reflected chorus waves captured by THEMIS. Annales Geophysicae, 2011, 29, 541-550.	0.6	14
419	Relation of substorm preâ€onset arc to largeâ€scale fieldâ€aligned current distribution. Geophysical Research Letters, 2012, 39, .	1.5	14
420	Local timeâ€dependent Pi2 frequencies confirmed by simultaneous observations from THEMIS probes in the inner magnetosphere and at lowâ€latitude ground stations. Journal of Geophysical Research, 2012, 117, .	3.3	14
421	THEMIS observations of compressional poloidal pulsations in the dawnside magnetosphere: A case study. Journal of Geophysical Research: Space Physics, 2013, 118, 7665-7673.	0.8	14
422	The importance of storm time steady magnetospheric convection in determining the final relativistic electron flux level. Journal of Geophysical Research: Space Physics, 2014, 119, 7433-7443.	0.8	14
423	Ion acceleration and reflection on magnetotail antidipolarization fronts. Geophysical Research Letters, 2015, 42, 9166-9175.	1.5	14
424	Magnetotail energy dissipation during an auroralÂsubstorm. Nature Physics, 2016, 12, 1158-1163.	6.5	14
425	Establishing the Context for Reconnection Diffusion Region Encounters and Strategies for the Capture and Transmission of Diffusion Region Burst Data by MMS. Space Science Reviews, 2016, 199, 631-650.	3.7	14
426	Waves in the innermost open boundary layer formed by dayside magnetopause reconnection. Journal of Geophysical Research: Space Physics, 2017, 122, 3291-3307.	0.8	14
427	Hot Ion Flows in the Distant Magnetotail: ARTEMIS Observations From Lunar Orbit to $\hat{a}^1/4\hat{a}^2$ 200 $\hat{A}<\hat{b}<\hat{b}<\hat{b}<\hat{b}<\hat{b}<\hat{b}<\hat{b}$. 0.8	14
428	THEMIS multispacecraft observations of a reconnecting magnetosheath current sheet with symmetric boundary conditions and a large guide field. Geophysical Research Letters, 2017, 44, 7598-7606.	1.5	14
429	Potential Evidence of Lowâ€Energy Electron Scattering and Ionospheric Precipitation by Time Domain Structures. Geophysical Research Letters, 2020, 47, e2020GL089138.	1.5	14
430	Extreme Magnetosphereâ€lonosphereâ€Thermosphere Responses to the 5 April 2010 Supersubstorm. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027654.	0.8	14
431	Configuration of the Earth's Magnetotail Current Sheet. Geophysical Research Letters, 2021, 48, e2020GL092153.	1.5	14
432	Superthermal Proton and Electron Fluxes in the Plasma Sheet Transition Region and Their Dependence on Solar Wind Parameters. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028580.	0.8	14

#	Article	IF	CITATIONS
433	Relative contributions of large-scale and wedgelet currents in the substorm current wedge. Earth, Planets and Space, 2020, 72, 106.	0.9	14
434	Particle energization in space plasmas: towards a multi-point, multi-scale plasma observatory. Experimental Astronomy, 2022, 54, 427-471.	1.6	14
435	Deformation and evolution of solar wind discontinuities through their interactions with the Earth's bow shock. Journal of Geophysical Research, 2009, 114, .	3.3	13
436	THEMIS multipoint observations of Pi2 pulsations inside and outside the plasmasphere. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	13
437	Identifying the magnetotail source region leading to preonset poleward boundary intensifications. Journal of Geophysical Research: Space Physics, 2013, 118, 4335-4340.	0.8	13
438	Plasmoid growth and expulsion revealed by twoâ€point ARTEMIS observations. Journal of Geophysical Research: Space Physics, 2013, 118, 2133-2144.	0.8	13
439	Chorus intensity modulation driven by timeâ€varying fieldâ€aligned lowâ€energy plasma. Journal of Geophysical Research: Space Physics, 2015, 120, 7433-7446.	0.8	13
440	Energetic ion leakage from foreshock transient cores. Journal of Geophysical Research: Space Physics, 2017, 122, 7209-7225.	0.8	13
441	Comment on "Pulsating Auroras Produced by Interactions of Electrons and Time Domain Structures― by Mozer Et Al Journal of Geophysical Research: Space Physics, 2018, 123, 2064-2070.	0.8	13
442	Plasma Anisotropies and Currents in the Nearâ€Earth Plasma Sheet and Inner Magnetosphere. Journal of Geophysical Research: Space Physics, 2018, 123, 5625-5639.	0.8	13
443	Modulation of Whistler Waves by Ultra‣owâ€Frequency Perturbations: The Importance of Magnetopause Location. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028334.	0.8	13
444	Statistical Study of Foreshock Transients in the Midtail Foreshock. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029156.	0.8	13
445	On the Nature of Intense Subâ€Relativistic Electron Precipitation. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	13
446	Auroral signatures of the plasma injection and dipolarization in the inner magnetosphere. Journal of Geophysical Research, 2010, 115, .	3.3	12
447	THEMIS observations of a transient event at the magnetopause. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	12
448	Revised timing and onset location of two isolated substorms observed by Time History of Events and Macroscale Interactions During Substorms (THEMIS). Journal of Geophysical Research, 2011, 116, .	3.3	12
449	Electromagnetic ELF wave intensification associated with fast earthward flows in mid-tail plasma sheet. Annales Geophysicae, 2012, 30, 467-488.	0.6	12
450	Multiprobe estimation of field line curvature radius in the equatorial magnetosphere and the use of proton precipitations in magnetosphereâ€ionosphere mapping. Journal of Geophysical Research: Space Physics, 2013, 118, 4924-4945.	0.8	12

#	Article	IF	Citations
451	ULF wave electromagnetic energy flux into the ionosphere: Joule heating implications. Journal of Geophysical Research: Space Physics, 2015, 120, 494-510.	0.8	12
452	Role of lower hybrid waves in ion heating at dipolarization fronts. Journal of Geophysical Research: Space Physics, 2017, 122, 5092-5104.	0.8	12
453	First Results From Sonification and Exploratory Citizen Science of Magnetospheric ULF Waves: Long-Lasting Decreasing-Frequency Poloidal Field Line Resonances Following Geomagnetic Storms. Space Weather, 2018, 16, 1753-1769.	1.3	12
454	THEMIS Observations of Particle Acceleration by a Magnetosheath Jetâ€Driven Bow Wave. Geophysical Research Letters, 2019, 46, 7929-7936.	1.5	12
455	Global View of Current Sheet Thinning: Plasma Pressure Gradients and Largeâ€Scale Currents. Journal of Geophysical Research: Space Physics, 2019, 124, 264-278.	0.8	12
456	Daytime Dynamo Electrodynamics With Spiral Currents Driven by Strong Winds Revealed by Vapor Trails and Sounding Rocket Probes. Geophysical Research Letters, 2020, 47, e2020GL088803.	1.5	12
457	ARTEMIS Observations of Foreshock Transients in the Midtail Foreshock. Geophysical Research Letters, 2020, 47, e2020GL090393.	1.5	12
458	Ionosphere Feedback to Electron Scattering by Equatorial Whistler Mode Waves. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028373.	0.8	12
459	Whistler Mode Waves in the Compressional Boundary of Foreshock Transients. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027758.	0.8	12
460	Contribution of Anisotropic Electron Current to the Magnetotail Current Sheet as a Function of Location and Plasma Conditions. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027251.	0.8	12
461	Dependence of Relativistic Electron Precipitation in the Ionosphere on EMIC Wave Minimum Resonant Energy at the Conjugate Equator. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029193.	0.8	12
462	Reply to comment by Harald U. Frey on "Substorm triggering by new plasma intrusion: THEMIS allâ€sky imager observations― Journal of Geophysical Research, 2010, 115, .	3.3	11
463	Flow vortices associated with flux transfer events moving along the magnetopause: Observations and an MHD simulation. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	11
464	Source location of falling tone chorus. Geophysical Research Letters, 2012, 39, .	1.5	11
465	Magnetospheric responses to the passage of the interplanetary shock on 24 November 2008. Journal of Geophysical Research, 2012, 117, .	3.3	11
466	Pitch angle distributions of electrons at dipolarization sites during geomagnetic activity: THEMIS observations. Journal of Geophysical Research: Space Physics, 2014, 119, 9747-9760.	0.8	11
467	Intense Crossâ€Tail Fieldâ€Aligned Currents in the Plasma Sheet at Lunar Distances. Geophysical Research Letters, 2018, 45, 4610-4617.	1.5	11
468	Local time extent of magnetopause reconnection using space–ground coordination. Annales Geophysicae, 2019, 37, 215-234.	0.6	11

#	Article	lF	Citations
469	Ion Anisotropy in Earth's Magnetotail Current Sheet: Multicomponent Ion Population. Journal of Geophysical Research: Space Physics, 2019, 124, 3454-3467.	0.8	11
470	Ionospheric Modulation by Storm Time Pc5 ULF Pulsations and the Structure Detected by PFISR‶HEMIS Conjunction. Geophysical Research Letters, 2020, 47, e2020GL089060.	1.5	11
471	Energetic Electron Acceleration by Ion-scale Magnetic Islands in Turbulent Magnetic Reconnection: Particle-in-cell Simulations and ARTEMIS Observations. Astrophysical Journal, 2020, 896, 105.	1.6	11
472	Statistical Study of Magnetosheath Jetâ€Driven Bow Waves. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027710.	0.8	11
473	On the Role of Whistlerâ€Mode Waves in Electron Interaction With Dipolarizing Flux Bundles. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	11
474	Alfvén modulation of the substorm magnetotail transport. Geophysical Research Letters, 1997, 24, 979-982.	1.5	10
475	A statistical study of the inner edge of the electron plasma sheet and the net convection potential as a function of geomagnetic activity. Journal of Geophysical Research, $2011, 116, n/a-n/a$.	3.3	10
476	RCMâ \in E simulation of the 13 March 2009 steady magnetospheric convection event. Journal of Geophysical Research, 2012, 117, .	3.3	10
477	Survey of the ULF wave Poynting vector near the Earth's magnetic equatorial plane. Journal of Geophysical Research: Space Physics, 2013, 118, 6212-6227.	0.8	10
478	Auroral Disturbances as a Manifestation of Interplay Between Large-Scale and Mesoscale Structure of Magnetosphere-Ionosphere Electrodynamical Coupling. Geophysical Monograph Series, 0, , 193-204.	0.1	10
479	Lunar dayside current in the terrestrial lobe: ARTEMIS observations. Journal of Geophysical Research: Space Physics, 2014, 119, 3381-3391.	0.8	10
480	On the increasing oscillation period of flows at the tailward retreating flux pileup region during dipolarization. Journal of Geophysical Research: Space Physics, 2014, 119, 6603-6611.	0.8	10
481	A 2-D empirical plasma sheet pressure model for substorm growth phase using the Support Vector Regression Machine. Journal of Geophysical Research: Space Physics, 2015, 120, 1957-1973.	0.8	10
482	Magnetospheric and solar wind dependences of coupled fastâ€mode resonances outside the plasmasphere. Journal of Geophysical Research: Space Physics, 2017, 122, 212-226.	0.8	10
483	Seasonal and Solar Wind Control of the Reconnection Line Location on the Earth's Dayside Magnetopause. Journal of Geophysical Research: Space Physics, 2018, 123, 7498-7512.	0.8	10
484	Prolonged Kelvin–Helmholtz Waves at Dawn and Dusk Flank Magnetopause: Simultaneous Observations by MMS and THEMIS. Astrophysical Journal, 2019, 875, 57.	1.6	10
485	THEMIS ESA First Science Results and Performance Issues. , 2009, , 477-508.		10
486	Growth and evolution of a plasmoid associated with a small, isolated substorm: IMP 8 and GEOTAIL measurements in the magnetotail. Geophysical Research Letters, 1995, 22, 3011-3014.	1.5	9

#	Article	IF	CITATIONS
487	Reply to comment by K. Liou and Y.â€L. Zhang on "Waveletâ€based ULF wave diagnosis of substorm expansion phase onsetâ€. Journal of Geophysical Research, 2009, 114, .	3.3	9
488	Uneven compression levels of Earth's magnetic fields by shocked solar wind. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	9
489	Multipoint observations of substorm preâ€onset flows and time sequence in the ionosphere and magnetosphere. Journal of Geophysical Research, 2012, 117, .	3.3	9
490	Stepwise tailward retreat of magnetic reconnection: THEMIS observations of an auroral substorm. Journal of Geophysical Research: Space Physics, 2016, 121, 4548-4568.	0.8	9
491	Distribution of Region 1 and 2 currents in the quiet and substorm time plasma sheet from THEMIS observations. Geophysical Research Letters, 2016, 43, 7813-7821.	1.5	9
492	The ion temperature gradient: An intrinsic property of Earth's magnetotail. Journal of Geophysical Research: Space Physics, 2017, 122, 8295-8309.	0.8	9
493	Fieldâ€Aligned Currents Originating From the Magnetic Reconnection Region: Conjugate MMSâ€ARTEMIS Observations. Geophysical Research Letters, 2018, 45, 5836-5844.	1.5	9
494	Ionospheric Outflow During the Substorm Growth Phase: THEMIS Observations of Oxygen Ions at the Plasma Sheet Boundary. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027612.	0.8	9
495	Beamâ€Driven Electron Cyclotron Harmonic Waves in Earth's Magnetotail. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028743.	0.8	9
496	Foreshock Cavities: Direct Transmission Through the Bow Shock. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029201.	0.8	9
497	Realistic Electron Diffusion Rates and Lifetimes Due to Scattering by Electron Holes. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029380.	0.8	9
498	Detailed Observations of a Burst of Energetic Particles in the Deep Magnetotail by Geotail. Journal of Geomagnetism and Geoelectricity, 1996, 48, 649-656.	0.8	9
499	Energetic Electron Precipitation Driven by the Combined Effect of ULF, EMIC, and Whistler Waves. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	9
500	Evolution of kinklike fluctuations associated with ion pickup within reconnection outflows in the Earth's magnetotail. Physics of Plasmas, 2009, 16, 120701.	0.7	8
501	Alfvénic plasma velocity variations observed at the inner edge of the lowâ€latitude boundary layer induced by the magnetosheath mirror mode waves: A THEMIS observation. Journal of Geophysical Research, 2009, 114, .	3.3	8
502	Categorization of the Time Sequence of Events Leading to Substorm Onset Based on THEMIS All-Sky Imager Observations., 2011,, 133-142.		8
503	A mechanism for heating electrons in the magnetopause current layer and adjacent regions. Annales Geophysicae, 2011, 29, 2305-2316.	0.6	8
504	Tailward leap of multiple expansions of the plasma sheet during a moderately intense substorm: THEMIS observations. Journal of Geophysical Research, 2012, 117, .	3.3	8

#	Article	IF	CITATIONS
505	Electron Cooling and Isotropization during Magnetotail Current Sheet Thinning: Implications for Parallel Electric Fields. Journal of Geophysical Research: Space Physics, 2017, 122, 11,389.	0.8	8
506	The Magnetospheric Source Region of the Bright Proton Aurora. Geophysical Research Letters, 2017, 44, 10,094.	1.5	8
507	Electron Acceleration by Magnetosheath Jetâ€Driven Bow Waves. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027709.	0.8	8
508	Magnetotail Dipolarizations and Ion Flux Variations During the Main Phase of Magnetic Storms. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028470.	0.8	8
509	Conjugate Observation of Magnetospheric Chorus Propagating to the Ionosphere by Ducting. Geophysical Research Letters, 2021, 48, e2021GL095933.	1.5	8
510	Spaceâ€Ground Observations of Dynamics of Substorm Onset Beads. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	8
511	Electron Resonant Interaction With Whistler Waves Around Foreshock Transients and the Bow Shock Behind the Terminator. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	8
512	Azimuthal auroral expansion associated with fast flows in the near-Earth plasma sheet: Coordinated observations of the THEMIS all-sky imagers and multiple spacecraft. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	7
513	Braking of high-speed flows in the magnetotail: THEMIS joint observations. Science Bulletin, 2014, 59, 326-334.	1.7	7
514	Earthward electric field and its reversal in the nearâ€Earth current sheet. Journal of Geophysical Research: Space Physics, 2016, 121, 10,803.	0.8	7
515	Scientific Objectives of Electron Losses and Fields INvestigation Onboard Lomonosov Satellite. Space Science Reviews, 2018, 214, 1.	3.7	7
516	Spatial Scales and Plasma Properties of the Distant Magnetopause: Evidence for Selective Ion and Electron Transport. Journal of Geophysical Research: Space Physics, 2019, 124, 5027-5041.	0.8	7
517	Overshoot dependence on the cross-shock potential. Annales Geophysicae, 2020, 38, 17-26.	0.6	7
518	First Results from the THEMIS Mission. , 2009, , 453-476.		7
519	Magnetospheric Source and Electric Current System Associated With Intense SAIDs. Geophysical Research Letters, 2021, 48, e2021GL093253.	1.5	7
520	Statistical Study of Favorable Foreshock Ion Properties for the Formation of Hot Flow Anomalies and Foreshock Bubbles. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	7
521	On the retreat of near-Earth neutral line during substorm expansion phase: a THEMIS case study during the 9 January 2008 substorm. Annales Geophysicae, 2012, 30, 143-151.	0.6	6
522	Universal time control of AKR: Earth is a spinâ€modulated variable radio source. Journal of Geophysical Research: Space Physics, 2013, 118, 1123-1131.	0.8	6

#	Article	IF	CITATIONS
523	Observational evidence of electron pitch angle scattering driven by ECH waves. Geophysical Research Letters, 2014, 41, 8076-8080.	1.5	6
524	A quantitative study of magnetospheric magnetic field line deformation by a two-loop substorm current wedge. Annales Geophysicae, 2015, 33, 505-517.	0.6	6
525	lon motion in a polarized current sheet. Physics of Plasmas, 2017, 24, 012908.	0.7	6
526	The Energetic Particle Environment of the Lunar Nearside: SEP Influence. Astrophysical Journal, 2017, 849, 151.	1.6	6
527	Properties of the Equatorial Magnetotail Flanks â^¼50–200Â <i>R</i> _{<i>E</i>} Downtail. Journal of Geophysical Research: Space Physics, 2017, 122, 11,917.	0.8	6
528	Mesoscale perturbations in midtail lobe/mantle during steady northward IMF: ARTEMIS observation and MHD simulation. Journal of Geophysical Research: Space Physics, 2017, 122, 6430-6441.	0.8	6
529	Visualization tool for three-dimensional plasma velocity distributions (ISEE_3D) as a plug-in for SPEDAS. Earth, Planets and Space, 2017, 69, .	0.9	6
530	The Dominant Role of Energetic Ions in Solar Wind Interaction With the Moon. Journal of Geophysical Research: Space Physics, 2019, 124, 3176-3192.	0.8	6
531	Comparison of the Flank Magnetopause at Nearâ€Earth and Lunar Distances: MMS and ARTEMIS Observations. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028406.	0.8	6
532	Magnetic reconnection in a charged, electron-dominant current sheet. Physics of Plasmas, 2020, 27, .	0.7	6
533	Superfast ion scattering by solar wind discontinuities. Physical Review E, 2020, 102, 033201.	0.8	6
534	Azimuthal Variation of Magnetopause Reconnection at Scales Below an Earth Radius. Geophysical Research Letters, 2020, 47, e2019GL086500.	1.5	6
535	Active auroral arc powered by accelerated electrons from very high altitudes. Scientific Reports, 2021, 11, 1610.	1.6	6
536	Fast Inverse Transform Sampling of Nonâ€Gaussian Distribution Functions in Space Plasmas. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	6
537	On a possible connection between the longitudinally propagating near-Earth plasma sheet and auroral arc waves: A reexamination. Journal of Geophysical Research: Space Physics, 2015, 120, 432-444.	0.8	5
538	Understanding the ion distributions near the boundaries of reconnection outflow region. Journal of Geophysical Research: Space Physics, 2016, 121, 9400-9410.	0.8	5
539	Offâ€equatorial currentâ€driven instabilities ahead of approaching dipolarization fronts. Journal of Geophysical Research: Space Physics, 2017, 122, 5247-5260.	0.8	5
540	Characteristics of high″atitude precursor flows ahead of dipolarization fronts. Journal of Geophysical Research: Space Physics, 2017, 122, 5307-5320.	0.8	5

#	Article	IF	CITATIONS
541	A Case Study of Near-Earth Magnetotail Conditions at Substorm and Pseudosubstorm Onsets. Geophysical Research Letters, 2018, 45, 6353-6361.	1.5	5
542	Concomitant Double Ion and Electron Populations in the Earth's Magnetopause Boundary Layers From Double Reconnection With Lobe and Closed Field Lines. Journal of Geophysical Research: Space Physics, 2018, 123, 5407-5419.	0.8	5
543	ARTEMIS Observations of Well-structured Lunar Wake in Subsonic Plasma Flow. Astrophysical Journal, 2019, 881, 76.	1.6	5
544	On the Driver of Daytime Pc3 Auroral Pulsations. Geophysical Research Letters, 2019, 46, 553-561.	1.5	5
545	In-situ and optical observations of sub-ion magnetic holes. Journal of Atmospheric and Solar-Terrestrial Physics, 2020, 208, 105365.	0.6	5
546	Ion Nongyrotropy in Solar Wind Discontinuities. Astrophysical Journal Letters, 2020, 889, L23.	3.0	5
547	Effects of Substorms on Highâ€Latitude Upper Thermospheric Winds. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028193.	0.8	5
548	The THEMIS Magnetic Cleanliness Program. , 2009, , 171-184.		5
549	Electrodynamic Contributions to the Hall―and Parallel Electric Fields in Collisionless Magnetic Reconnection. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029550.	0.8	5
550	Comparative Study of Electric Currents and Energetic Particle Fluxes in a Solar Flare and Earth Magnetospheric Substorm. Astrophysical Journal, 2021, 923, 151.	1.6	5
551	Statistical Study of Magnetospheric Conditions for SAPS and SAID. Geophysical Research Letters, 2022, 49, .	1.5	5
552	Hot Plasma Effects on Electron Resonant Scattering by Electromagnetic Ion Cyclotron Waves. Geophysical Research Letters, 2022, 49, .	1.5	5
553	THEMIS observations of consecutive bursts of Pi2 pulsations: The 20 April 2007 event. Journal of Geophysical Research, 2009, 114, .	3.3	4
554	THEMIS observations of two substorms on February 26, 2008. Science China Technological Sciences, 2010, 53, 1328-1337.	2.0	4
555	THEMIS observations of double-onset substorms and their association with IMF variations. Annales Geophysicae, 2011, 29, 591-611.	0.6	4
556	Substormâ€like magnetospheric response to a discontinuity in the B _x component of interplanetary magnetic field. Journal of Geophysical Research, 2012, 117, .	3.3	4
557	Pressure gradient evolution in the near-Earth magnetotail at the arrival of BBFs. Science Bulletin, 2014, 59, 4804-4808.	1.7	4
558	Particle Beams in the Vicinity of Magnetic Separatrix According to Near‣unar ARTEMIS Observations. Journal of Geophysical Research: Space Physics, 2019, 124, 1883-1903.	0.8	4

#	Article	IF	CITATIONS
559	Energetic Ion Reflections at Interplanetary Shocks: First Observations From ARTEMIS. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028174.	0.8	4
560	Magnetotail Flux Accumulation Leads to Substorm Current Wedge Formation: A Case Study. Journal of Geophysical Research: Space Physics, 2021, 126, .	0.8	4
561	Beam-driven ECH waves: A parametric study. Physics of Plasmas, 2021, 28, .	0.7	4
562	A Survey of Dense Low Energy Ions in Earth's Outer Magnetosphere: Relation to Solar Wind Dynamic Pressure, IMF, and Magnetospheric Activity. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029208.	0.8	4
563	First Results of the THEMIS Search Coil Magnetometers. , 2009, , 509-534.		4
564	ARTEMIS Science Objectives., 2011,, 27-59.		4
565	First Results from ARTEMIS, a New Two-Spacecraft Lunar Mission: Counter-Streaming Plasma Populations in the Lunar Wake. , 2011, , 93-107.		4
566	Statistical Properties and Proposed Source Mechanism of Recurrent Substorm Activity With Oneâ∈Hour Periodicity. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	4
567	Configuration of Magnetotail Current Sheet Prior to Magnetic Reconnection Onset. Geophysical Research Letters, 2022, 49, .	1.5	4
568	A filament of energetic particles near the high-latitude dawn magnetopause. Geophysical Research Letters, 1994, 21, 3011-3014.	1.5	3
569	The Upgraded CARISMA Magnetometer Array inÂtheÂTHEMIS Era. , 2009, , 413-451.		3
570	On the large-scale structure of the tail current as measured by THEMIS. Advances in Space Research, 2014, 54, 1773-1785.	1,2	3
571	On the Origin of Perpendicular Ion Anisotropy Inside Dipolarizing Flux Bundles. Journal of Geophysical Research: Space Physics, 2019, 124, 4009-4021.	0.8	3
572	A Statistical Study of Nearâ€Earth Magnetotail Evolution During Pseudosubstorms and Substorms With THEMIS Data. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA026642.	0.8	3
573	ARTEMIS Mission Design. , 2012, , 61-91.		3
574	A Statistical Examination of EMIC Waveâ€Driven Electron Pitch Angle Scattering Signatures. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	3
575	Simultaneous Observations of EMICâ€Induced Drifting Electron Holes (EDEHs) in the Earth's Radiation Belt by the Arase Satellite, Van Allen Probes, and THEMIS. Geophysical Research Letters, 2022, 49, .	1.5	3
576	Potential Association Between the Low-Energy Plasma Structure and the Patchy Pulsating Aurora. Frontiers in Astronomy and Space Sciences, 2021, 8, .	1.1	3

#	Article	IF	Citations
577	Observation of an inner magnetosphere electric field associated with a BBF-like flow and PBIs. Annales Geophysicae, 2009, 27, 1489-1500.	0.6	2
578	Reply to comment by Rae et al. on "Formation of substorm Pi2: A coherent response to auroral streamers and currentsâ€. Journal of Geophysical Research: Space Physics, 2013, 118, 3497-3499.	0.8	2
579	Three dimensional analytical model of dipolarizing flux bundles. Physics of Plasmas, 2018, 25, .	0.7	2
580	Reply to: Comment on "The Dominant Role of Energetic Ions in Solar Wind Interaction With the Moon―by Poppe. Journal of Geophysical Research: Space Physics, 2019, 124, 6933-6937.	0.8	2
581	Spatial distributions of electromagnetic field variations and injection regions during the 20 November 2007 sawtooth event. Annales Geophysicae, 2009, 27, 3825-3840.	0.6	1
582	The Energetic Particle Environment of the Lunar Nearside: Influence of the Energetic Ions from Earth's Bow Shock. Astrophysical Journal, 2018, 863, 80.	1.6	1
583	Effects of Ion Slippage in Earth's Ionosphere and the Plasma Sheet. Geophysical Research Letters, 2021, 48, e2020GL091494.	1.5	1
584	A THEMIS multicase study of dipolarization fronts in the magnetotail plasma sheet., 2011, .		1
585	A Magnetospheric Driver of Westward Traveling Surge: Plasmaâ€Sheet Bubble. Geophysical Research Letters, 2021, 48, e2021GL095539.	1.5	1
586	Evolution of Thermal Electron Distributions in the Magnetotail: Convective Heating and Scatteringâ€Induced Losses. Journal of Geophysical Research: Space Physics, 2021, 126, .	0.8	1
587	Properties of Stormâ€Time Magnetic Flux Transport. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	1
588	Wavelength Measurements of Electron Cyclotron Harmonic Waves in Earth's Magnetotail. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	1
589	The Geoeffectiveness of Solar Wind Current Sheets and Its Modulation by Foreshock Ions. Geophysical Research Letters, 2022, 49, .	1.5	1
590	Angelopoulos, Schrag, and Tabazadeh receive 2001 James B. Macelwane Medal. Eos, 2002, 83, 138.	0.1	0
591	A kinetic perspective on azimuthal variation of magnetopause reconnection at scales below an Earth radius. Journal of Physics: Conference Series, 2020, 1620, 012028.	0.3	0
592	Short Chorus Packets in Radiation Belts: Statistics and Role in Energetic Electron Acceleration. , 2021, , .		0
593	Orbit Design for the THEMIS Mission. , 2009, , 61-89.		0
594	Establishing the Context for Reconnection Diffusion Region Encounters and Strategies for the Capture and Transmission of Diffusion Region Burst Data by MMS., 2017,, 629-648.		0