List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/968484/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dopantâ€Free Holeâ€Transporting Materials for Stable and Efficient Perovskite Solar Cells. Advanced Materials, 2017, 29, 1606555.	11.1	171
2	Efficient Holeâ€Transporting Materials with Triazole Core for Highâ€Efficiency Perovskite Solar Cells. Chemistry - an Asian Journal, 2016, 11, 548-554.	1.7	19
3	Solution processed bulk heterojunction solar cells based on A–D–A small molecules with a dihydroindoloindole (DINI) central donor and different acceptor end groups. Journal of Materials Chemistry C, 2016, 4, 3508-3516.	2.7	17
4	Stable and efficient star-shaped hole transporting materials with EDOT moiety as side arm for perovskite solar cells. Dyes and Pigments, 2016, 126, 179-185.	2.0	21
5	A dual-functional asymmetric squaraine-based low band gap hole transporting material for efficient perovskite solar cells. Nanoscale, 2016, 8, 6335-6340.	2.8	32
6	Efficient Hole Transporting Materials with Two or Four <i>N</i> , <i>N</i> â€Ði(4â€methoxyphenyl)aminophenyl Arms on an Ethene Unit for Perovskite Solar Cells. Chemistry - A European Journal, 2015, 21, 15919-15923.	1.7	38
7	S,N-Heteropentacene based small molecules with A–D–A structure for solution processed organic bulk heterojunction solar cells. RSC Advances, 2015, 5, 102115-102125.	1.7	9
8	Silolothiophene-linked triphenylamines as stable hole transporting materials for high efficiency perovskite solar cells. Energy and Environmental Science, 2015, 8, 2946-2953.	15.6	163
9	Organic sensitizers possessing carbazole donor and indeno[1,2-b] thiophene spacer for efficient dye sensitized solar cells. Dyes and Pigments, 2015, 119, 41-48.	2.0	20
10	Efficient Organic Solar Cells with Star-Shaped Small Molecules Comprising of Planar Donating Core and Accepting Edges. Journal of Physical Chemistry C, 2014, 118, 27193-27200.	1.5	18
11	Efficient Perovskite Solar Cells with 13.63 % Efficiency Based on Planar Triphenylamine Hole Conductors. Chemistry - A European Journal, 2014, 20, 10894-10899.	1.7	136
12	The impact of an indeno[1,2-b]thiophene spacer on dye-sensitized solar cell performances of cyclic thiourea functionalized organic sensitizers. Journal of Materials Chemistry A, 2014, 2, 12931.	5.2	26
13	Improved External Quantum Efficiency from Solution-Processed (CH ₃ NH ₃)PbI ₃ Perovskite/PC ₇₁ BM Planar Heterojunction for High Efficiency Hybrid Solar Cells. Journal of Physical Chemistry C, 2014, 118, 25899-25905.	1.5	40
14	Efficient star-shaped hole transporting materials with diphenylethenyl side arms for an efficient perovskite solar cell. Journal of Materials Chemistry A, 2014, 2, 19136-19140.	5.2	117
15	Perovskite Solar Cells with 12.8% Efficiency by Using Conjugated Quinolizino Acridine Based Hole Transporting Material. Journal of the American Chemical Society, 2014, 136, 8516-8519.	6.6	243
16	Aqueous electrolyte based dye-sensitized solar cells using organic sensitizers. New Journal of Chemistry, 2013, 37, 329-336.	1.4	19
17	lodine vapor doped polyaniline nanoparticles counter electrodes for dye-sensitized solar cells. Synthetic Metals, 2013, 174, 6-13.	2.1	46
18	Efficient small molecule organic semiconductor containing bis-dimethylfluorenyl amino benzo[b]thiophene for high open circuit voltage in high efficiency solution processed organic solar cell. RSC Advances, 2012, 2, 2692.	1.7	25

#	Article	IF	CITATIONS
19	High-performance dye-sensitized solar cells based on PEDOT nanofibers as an efficient catalytic counter electrode. Journal of Materials Chemistry, 2012, 22, 21624.	6.7	97
20	Efficient Organic Semiconductors Containing Fluorine-Substituted Benzothiadiazole for Solution-Processed Small Molecule Organic Solar Cells. Journal of Physical Chemistry C, 2012, 116, 23205-23213.	1.5	49
21	Camphorsulfonic Acid-Doped Polyaniline Transparent Counter Electrode for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2012, 116, 22743-22748.	1.5	54
22	Pt Nanoparticles Supported on Polypyrrole Nanospheres as a Catalytic Counter Electrode for Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2011, 115, 22035-22039.	1.5	73
23	Enhancing the Performance of Organic Dye-Sensitized Solar Cells via a Slight Structure Modification. Journal of Physical Chemistry C, 2011, 115, 22640-22646.	1.5	39
24	Spherical polypyrrole nanoparticles as a highly efficient counter electrode for dye-sensitized solar cells. Journal of Materials Chemistry, 2011, 21, 8146.	6.7	177
25	Molecular engineering of push-pull chromophore for efficient bulk-heterojunction morphology in solution processed small molecule organic photovoltaics. Journal of Materials Chemistry, 2011, 21, 7248.	6.7	60
26	Silole-spaced triarylamine derivatives as highly efficient organic sensitizers in dye-sensitized solar cells (DSSCs). Journal of Materials Chemistry, 2010, 20, 2391.	6.7	97
27	Molecular engineering of panchromatic unsymmetrical squaraines for dye-sensitized solar cell applications. Journal of Materials Chemistry, 2010, 20, 3280.	6.7	70
28	<i>C</i> ₂ â€Symmetric Group 4 Metal Complexes Adorned with Chiral N,O Chelates: Synthesis and Structural Characterization of Helical Hexacoordinate Metal Dichlorides Derived from 6â€Isopropylâ€3â€methylâ€2â€(4â€isopropylâ€4,5â€dihydrooxazolâ€2â€yl)phenol Ligands. Zeitschrift Fur Ano Allgemeine Chemie, 2009, 635, 1435-1441.	rganische	Und
29	Novel Amphiphilic Ruthenium Sensitizer with Hydrophobic Thiophene or Thieno(3,2- <i>b</i>)thiophene-Substituted 2,2′-Dipyridylamine Ligands for Effective Nanocrystalline Dye Sensitized Solar Cells. Chemistry of Materials, 2009, 21, 5719-5726.	3.2	51
30	High efficient donor–acceptor ruthenium complex for dye-sensitized solar cell applications. Energy and Environmental Science, 2009, 2, 100-102.	15.6	104
31	Half-Metallocene Titanium(IV) Phenyl Phenoxide for High Temperature Olefin Polymerization: Ortho-Substituent Effect at Ancillary <i>o</i> -Phenoxy Ligand for Enhanced Catalytic Performance. Macromolecules, 2009, 42, 6932-6943.	2.2	31
32	Structure–Catalytic Activity Relationship in Bridging Silacycloalkyl Ring Conformations of Constrained Geometry Titanium Complexes. European Journal of Inorganic Chemistry, 2008, 2008, 2214-2224.	1.0	7
33	Molecular engineering of hybrid sensitizers incorporating an organic antenna into ruthenium complex and their application in solar cells. New Journal of Chemistry, 2008, 32, 2233.	1.4	39
34	A polymer gel electrolyte to achieve ≥6% power conversion efficiency with a novel organic dye incorporating a low-band-gap chromophore. Journal of Materials Chemistry, 2008, 18, 5223.	6.7	136
35	Multiple-decked Gd(iii) complexes induced by hydrogen bonds depending on anions. CrystEngComm, 2007, 9, 30-34.	1.3	9
36	Synthesis, Properties, and Crystal Structures of Copper(II) Di-(2-picolyl)amine Complexes Containing Inorganic Salts. Journal of Chemical Crystallography, 2007, 37, 847-852.	0.5	11

#	Article	IF	CITATIONS
37	Electrochemical Depositon of End-Capped Triarylamine and CBP Dendrimers: Alternate Technique for the Fabrication of Organic Light-Emitting Devices. Materials Research Society Symposia Proceedings, 2006, 965, 1.	0.1	0
38	Dendritic Iridium(III)-Encapsulated Complexes for Organic Light Emitting Diodes. Materials Research Society Symposia Proceedings, 2006, 965, 1.	0.1	0
39	Green Light-Emitting Diodes (LED) Based on Diarylethene. Molecular Crystals and Liquid Crystals, 2006, 444, 157-168.	0.4	5
40	Dielectric characteristics of Pb(Zn1/3Ta2/3)O3-BaTiO3 ceramics with/without PbTiO3 modification. Journal of Materials Science, 2005, 40, 6151-6156.	1.7	2
41	Syntheses and Crystal Structures of Intramolecularly Stabilized Organo Aluminum, Gallium, and Indium Compounds Containing theC,P-Chelatingo-Carboranylphosphino Ligand [o-C2B10H10(CH2PMe2)-C,P]-(CabC,P). X-ray Structure of Pentacoordinated Group 13 Metal Complexes (CabC,P)2MX (M = Ga, In: X = Cl). Organometallics. 2005. 24. 5845-5852.	1.1	9
42	Stereoselective Hydroboration of Diynes and Triyne to Give Products Containing Multiple Vinylene Bridges:Â A Versatile Application to Fluorescent Dyes and Light-Emitting Copolymers. Organometallics, 2004, 23, 4569-4575.	1.1	27
43	Titanium Complexes Incorporating 1,1-Bis(tert-butylamido)-1-silacycloalkane Ligands:Â Generation of Alkyl Derivatives and Reactivity toward Molecular Oxygen. Organometallics, 2004, 23, 559-567.	1.1	22
44	Highly Efficient Hydrosilylation of Diyne and Triyne π-Electron Bridges:  Its Application to Fluorescent Dyes and Silylene-Spaced Vinylarene Compounds. Organometallics, 2004, 23, 4184-4191.	1.1	27
45	Crystal Structure of 1,3-Bis(5,5'-N-7-azaindolyl-[2,2']bithiophenyl-3-yl)-1,1,3,3-tetraphenyl-disiloxane. Analytical Sciences: X-ray Structure Analysis Online, 2004, 20, X155-X156.	0.1	0
46	o-Carboranyl derivatives of 1,3,5-s-triazines: structures, properties andin vitro activities. Applied Organometallic Chemistry, 2003, 17, 539-548.	1.7	23
47	The first 1,3-digermyla-2-nickela-carboranylene and the Ni-catalyzed double germylation of unsaturated organic substrates. Chemical Communications, 2001, , 1730-1731.	2.2	14
48	Synthesis and reactivity of an efficient 1,2-dehydrocarborane precursor, phenyl[o-(trimethylsilyl)carboranyl]iodonium acetate. Chemical Communications, 2001, , 2110-2111.	2.2	61
49	Synthesis and Reactivity of Organotin Compounds Containing the C,P-Chelatingo-Carboranylphosphino Ligand [o-C2B10H10PPh2-C,P](CabC,P). X-ray Structures of (CabC,CH2P)SnMe2Br, [(CabC,P)SnMe2]2Pd, and [(CabC,P)SnMe2]Pd(PEt3)Cl. Organometallics, 2001, 20, 741-748.	1.1	45
50	Characterization and catalytic properties of Tiâ€ZSMâ€5 prepared by chemical vapor deposition. Catalysis Letters, 2000, 66, 169-173.	1.4	18
51	Steric Influence on the Reactivity of the (o-Carboranedithiolato)iridium(III) Complex [Ir(η5-C5Me5)(η2-S2C2B10H10)]: New Types of Addition Reactions Involving Cyclometalation or Isomerizationâ€. Organometallics, 2000, 19, 1514-1521.	1.1	87
52	Synthesis and Double-Silylation Reactions of a P2PtSi2Complex Containing ano-Carboranylene. Organometallics, 2000, 19, 1216-1224.	1.1	45
53	New Types of Base-Stabilized Alkyl Aluminum, Gallium, and Indium Complexes. Organometallics, 2000, 19, 4036-4042.	1.1	26
54	Unusual Double Silylation Reaction of a PtSi2P2 Complex with an o-Carboranyl Unit. Organometallics, 1999, 18, 1818-1820.	1.1	36

#	Article	IF	CITATIONS
55	Title is missing!. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1998, 30, 279-287.	1.6	1
56	New Class of Fischer-Type Carbene Complexes Containing ano-Carboranyl Substituent. Synthesis and Crystal Structure of (CO)5W[C(OMe)(PhC2B10H10)] and (CO)4(PhC2B10H10)Mn[C(OCH3)(CH3)]. Organometallics, 1998, 17, 1109-1115.	1.1	17
57	Thiosemicarbazone Complexes of Indium with New Modes of Coordination:Â X-ray Crystal Structure of {(Me2In)2[NC5H4CMeNNC(S)NC6H5]2}(InMe). Organometallics, 1997, 16, 4755-4758.	1.1	27
58	Synthesis and Characterization of New Trinuclear Aluminum and Gallium Complexes of Bis(thiosemicarbazones). Single-Crystal Structure of (MeAl){CH2[C(Me)NNC(S)N(Me)]2}(AlMe2)2. Organometallics, 1997, 16, 1503-1506.	1.1	14
59	Unusual Coordination Chemistry of Organoaluminum and -gallium Complexes in N2S and NS Coordination Environments. Synthesis and Crystal Structure of (Me2Al)[NC5H4CMeNNC(S)NC3H7](AlMe2) and (Me2Ga)[PhMeCNNC(S)NPh](GaMe2). Organometallics, 1997 16 2110-2115	1.1	21