
Thaned Pongjanyakul

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9684766/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Acid and alkali modifications of tapioca starches: Physicochemical characterizations and evaluations for use in tablets. Journal of Drug Delivery Science and Technology, 2022, 68, 103068.	3.0	3
2	Preparation of redispersible dry nanoemulsion using chitosan-octenyl succinic anhydride starch polyelectrolyte complex as stabilizer. Journal of Drug Delivery Science and Technology, 2022, 73, 103433.	3.0	4
3	Particle Agglomeration of Acid-Modified Tapioca Starches: Characterization and Use as Direct Compression Fillers in Tablets. Pharmaceutics, 2022, 14, 1245.	4.5	4
4	Films Fabricated with Native and Ballâ€Milled Modified Glutinous Rice Starch: Physicochemical and Mucoadhesive Properties. Starch/Staerke, 2021, 73, 2000012.	2.1	2
5	Quaternary polymethacrylateâ^'magnesium aluminum silicate film formers: Stability studies for tablet coatings. Journal of Drug Delivery Science and Technology, 2021, 62, 102389.	3.0	0
6	Thai glutinous rice starch modified by ball milling and its application as a mucoadhesive polymer. Carbohydrate Polymers, 2020, 232, 115812.	10.2	27
7	Modified glutinous rice starch-chitosan composite films for buccal delivery of hydrophilic drug. Carbohydrate Polymers, 2020, 245, 116556.	10.2	32
8	Eudragit RL-based film coatings: How to minimize sticking and adjust drug release using MAS. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 148, 126-133.	4.3	8
9	Alginate-poloxamer beads for clotrimazole delivery: Molecular interactions, mechanical properties, and anticandidal activity. International Journal of Biological Macromolecules, 2020, 148, 1061-1071.	7.5	10
10	Sodium caseinate films modified using halloysite: Physicochemical characterization and drug permeability studies. Journal of Drug Delivery Science and Technology, 2019, 54, 101235.	3.0	6
11	Alginate-caseinate composites: Molecular interactions and characterization of cross-linked beads for the delivery of anticandidals. International Journal of Biological Macromolecules, 2018, 115, 483-493.	7.5	10
12	Particle agglomeration of chitosan–magnesium aluminum silicate nanocomposites for direct compression tablets. International Journal of Pharmaceutics, 2018, 535, 410-419.	5.2	14
13	PREPARATION AND CHARACTERIZATION OF POLY (VINYL ALCOHOL)–POLY (VINYL PYRROLIDONE) MUCOADHESIVE BUCCAL PATCHES FOR DELIVERY OF LIDOCAINE HCL. International Journal of Applied Pharmaceutics, 2018, 10, 115.	0.3	19
14	Sodium caseinate-magnesium aluminum silicate nanocomposite films for modified-release tablets. Materials Science and Engineering C, 2018, 92, 827-839.	7.3	12
15	Modification of alginate beads using gelatinized and ungelatinized arrowroot (Tacca) Tj ETQq1 1 0.784314 rgBT Macromolecules, 2018, 118, 683-692.	/Overlock 7.5	10 Tf 50 187 27
16	Chitosan-clay nanocomposite microparticles for controlled drug delivery: Effects of the MAS content and TPP crosslinking. Journal of Drug Delivery Science and Technology, 2017, 40, 1-10.	3.0	37
17	Modification of gellan gum films by halloysite: physicochemical evaluation and drug permeation properties. Drug Development and Industrial Pharmacy, 2017, 43, 492-501.	2.0	4
18	Chitosan-clay matrix tablets for sustained-release drug delivery: Effect of chitosan molecular weight and lubricant. Journal of Drug Delivery Science and Technology, 2016, 35, 303-313.	3.0	23

THANED PONGJANYAKUL

#	Article	IF	CITATIONS
19	Chitosan–gum arabic polyelectrolyte complex films: physicochemical, mechanical and mucoadhesive properties. Pharmaceutical Development and Technology, 2016, 21, 590-599.	2.4	35
20	Quaternary polymethacrylate–magnesium aluminum silicate films: Water uptake kinetics and film permeability. International Journal of Pharmaceutics, 2015, 490, 165-172.	5.2	10
21	Quaternary polymethacrylate–sodium alginate films: effect of alginate block structures and use for sustained release tablets. Pharmaceutical Development and Technology, 2015, 21, 1-12.	2.4	2
22	Lysozyme–magnesium aluminum silicate microparticles: Molecular interaction, bioactivity and release studies. International Journal of Biological Macromolecules, 2015, 80, 651-658.	7.5	5
23	Spray-dried chitosan-magnesium aluminum silicate microparticles as matrix formers in controlled release tablets. Journal of Drug Delivery Science and Technology, 2015, 30, 114-122.	3.0	16
24	Modification of quaternary polymethacrylate films using sodium alginate: Film characterization and drug permeability. International Journal of Pharmaceutics, 2014, 460, 63-72.	5.2	35
25	Characterization of chitosan–magnesium aluminum silicate nanocomposite films for buccal delivery of nicotine. International Journal of Biological Macromolecules, 2013, 55, 24-31.	7.5	25
26	Quaternary polymethacrylate–magnesium aluminum silicate films: Molecular interactions, mechanical properties and tackiness. International Journal of Pharmaceutics, 2013, 458, 57-64.	5.2	18
27	Nicotine–magnesium aluminum silicate microparticle surface modified with chitosan for mucosal delivery. Materials Science and Engineering C, 2013, 33, 1727-1736.	7.3	13
28	Influence of pH Modifiers and HPMC Viscosity Grades on Nicotine–Magnesium Aluminum Silicate Complex-Loaded Buccal Matrix Tablets. AAPS PharmSciTech, 2012, 13, 674-685.	3.3	9
29	Preparation and Characterization of Nicotine–Magnesium Aluminum Silicate Complex-Loaded Sodium Alginate Matrix Tablets for Buccal Delivery. AAPS PharmSciTech, 2011, 12, 683-692.	3.3	28
30	Novel chitosanâ^'magnesium aluminum silicate nanocomposite film coatings for modified-release tablets. International Journal of Pharmaceutics, 2011, 407, 132-141.	5.2	36
31	Shed king cobra and cobra skins as model membranes for in-vitro nicotine permeation studies. Journal of Pharmacy and Pharmacology, 2010, 54, 1345-1350.	2.4	14
32	Influence of magnesium aluminium silicate on rheological, release and permeation characteristics of diclofenac sodium aqueous gels in-vitro. Journal of Pharmacy and Pharmacology, 2010, 57, 429-434.	2.4	23
33	Enhanced entrapment efficiency and modulated drug release of alginate beads loaded with drug–clay intercalated complexes as microreservoirs. Carbohydrate Polymers, 2010, 81, 409-419.	10.2	72
34	Propranolol–magnesium aluminum silicate complex dispersions and particles: Characterization and factors influencing drug release. International Journal of Pharmaceutics, 2010, 383, 106-115.	5.2	39
35	Chitosan–magnesium aluminum silicate nanocomposite films: Physicochemical characterization and drug permeability. International Journal of Pharmaceutics, 2010, 393, 220-230.	5.2	41
36	Nicotine-loaded sodium alginate–magnesium aluminum silicate (SA–MAS) films: Importance of SA–MAS ratio. Carbohydrate Polymers, 2010, 80, 1018-1027.	10.2	12

THANED PONGJANYAKUL

#	Article	IF	CITATIONS
37	Alginate–magnesium aluminum silicate films: Importance of alginate block structures. International Journal of Pharmaceutics, 2009, 365, 100-108.	5.2	37
38	Alginate-magnesium aluminum silicate films for buccal delivery of nicotine. Colloids and Surfaces B: Biointerfaces, 2009, 74, 103-113.	5.0	63
39	Polymer–Magnesium Aluminum Silicate Composite Dispersions for Improved Physical Stability of Acetaminophen Suspensions. AAPS PharmSciTech, 2009, 10, 346-354.	3.3	9
40	Physicochemical characterizations and release studies of nicotine–magnesium aluminum silicate complexes. Applied Clay Science, 2009, 44, 242-250.	5.2	46
41	Interaction of nicotine with magnesium aluminum silicate at different pHs: Characterization of flocculate size, zeta potential and nicotine adsorption behavior. Colloids and Surfaces B: Biointerfaces, 2008, 65, 54-60.	5.0	32
42	Alginate–magnesium aluminum silicate composite films: Effect of film thickness on physical characteristics and permeability. International Journal of Pharmaceutics, 2008, 346, 1-9.	5.2	27
43	Chitosan–magnesium aluminum silicate composite dispersions: Characterization of rheology, flocculate size and zeta potential. International Journal of Pharmaceutics, 2008, 351, 227-235.	5.2	51
44	Modulating drug release and matrix erosion of alginate matrix capsules by microenvironmental interaction with calcium ion. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 67, 187-195.	4.3	32
45	Xanthan–alginate composite gel beads: Molecular interaction and in vitro characterization. International Journal of Pharmaceutics, 2007, 331, 61-71.	5.2	162
46	Alginate-magnesium aluminum silicate films: Effect of plasticizers on film properties, drug permeation and drug release from coated tablets. International Journal of Pharmaceutics, 2007, 333, 34-44.	5.2	57
47	Sodium alginate-magnesium aluminum silicate composite gels: Characterization of flow behavior, microviscosity, and drug diffusivity. AAPS PharmSciTech, 2007, 8, E158-E165.	3.3	25
48	Effect of sampling procedures of release testing on drug release and scale-up production feasibility of multiple-unit dextromethorphan resinate tablets: A technical note. AAPS PharmSciTech, 2007, 8, 298-304.	3.3	9
49	Modulation of drug release from glyceryl palmitostearate–alginate beads via heat treatment. International Journal of Pharmaceutics, 2006, 319, 20-28.	5.2	12
50	Molecular interaction in alginate beads reinforced with sodium starch glycolate or magnesium aluminum silicate, and their physical characteristics. International Journal of Pharmaceutics, 2005, 293, 51-62.	5.2	70
51	Effect of polysulfonate resins and direct compression fillers on multiple-unit sustained-release dextromethorphan resinate tablets. AAPS PharmSciTech, 2005, 6, E190-E197.	3.3	13
52	Investigation of novel alginateâ^'magnesium aluminum silicate microcomposite films for modified-release tablets. Journal of Controlled Release, 2005, 107, 343-356.	9.9	84
53	Melted glyceryl palmitostearate (GPS) pellets for protein delivery. International Journal of Pharmaceutics, 2004, 271, 53-62.	5.2	31
54	Acrylic Matrix Type Nicotine Transdermal Patches: In Vitro Evaluations and Batch-to-Batch Uniformity. Drug Development and Industrial Pharmacy, 2003, 29, 843-853.	2.0	22

#	Article	IF	CITATIONS
55	Permeation Studies Comparing Cobra Skin with Human Skin Using Nicotine Transdermal Patches. Drug Development and Industrial Pharmacy, 2000, 26, 635-642.	2.0	20