George Tellides

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9682728/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel Measurement of Relative Aortic Size Predicts Rupture of Thoracic Aortic Aneurysms. Annals of Thoracic Surgery, 2006, 81, 169-177.	1.3	493
2	Endothelial-to-mesenchymal transition drives atherosclerosis progression. Journal of Clinical Investigation, 2015, 125, 4514-4528.	8.2	394
3	Interleukin-17 and Interferon-γ Are Produced Concomitantly by Human Coronary Artery–Infiltrating T Cells and Act Synergistically on Vascular Smooth Muscle Cells. Circulation, 2009, 119, 1424-1432.	1.6	369
4	Interferon- \hat{I}^3 elicits arteriosclerosis in the absence of leukocytes. Nature, 2000, 403, 207-211.	27.8	362
5	Role of Mechanotransduction in Vascular Biology. Circulation Research, 2015, 116, 1448-1461.	4.5	299
6	FGF Regulates TGF-β Signaling and Endothelial-to-Mesenchymal Transition via Control of let-7 miRNA Expression. Cell Reports, 2012, 2, 1684-1696.	6.4	265
7	Ten-Eleven Translocation-2 (TET2) Is a Master Regulator of Smooth Muscle Cell Plasticity. Circulation, 2013, 128, 2047-2057.	1.6	231
8	Tgfbr2 disruption in postnatal smooth muscle impairs aortic wall homeostasis. Journal of Clinical Investigation, 2014, 124, 755-767.	8.2	223
9	CD4+CD25+ regulatory T cells suppress allograft rejection mediated by memory CD8+ T cells via a CD30-dependent mechanism. Journal of Clinical Investigation, 2004, 113, 310-317.	8.2	211
10	Management of descending aortic dissection. Annals of Thoracic Surgery, 1999, 67, 2002-2005.	1.3	204
11	Endothelial TGF-β signalling drives vascular inflammation and atherosclerosis. Nature Metabolism, 2019, 1, 912-926.	11.9	172
12	Small-diameter biodegradable scaffolds for functional vascular tissue engineering in the mouse model. Biomaterials, 2008, 29, 1454-1463.	11.4	160
13	Thioredoxin-2 Inhibits Mitochondrial Reactive Oxygen Species Generation and Apoptosis Stress Kinase-1 Activity to Maintain Cardiac Function. Circulation, 2015, 131, 1082-1097.	1.6	139
14	Integrin beta3 regulates clonality and fate of smooth muscle-derived atherosclerotic plaque cells. Nature Communications, 2018, 9, 2073.	12.8	135
15	Dysfunctional Mechanosensing in Aneurysms. Science, 2014, 344, 477-479.	12.6	133
16	Alloantibody and Complement Promote T Cell–Mediated Cardiac Allograft Vasculopathy Through Noncanonical Nuclear Factor-κB Signaling in Endothelial Cells. Circulation, 2013, 128, 2504-2516.	1.6	132
17	Hyperplastic Cellular Remodeling of the Media in Ascending Thoracic Aortic Aneurysms. Circulation, 2005, 112, 1098-1105.	1.6	131
18	Smooth Muscle Cell Reprogramming in Aortic Aneurysms. Cell Stem Cell, 2020, 26, 542-557.e11.	11.1	114

#	Article	IF	CITATIONS
19	Implantable tissue-engineered blood vessels from human induced pluripotent stem cells. Biomaterials, 2016, 102, 120-129.	11.4	111
20	Venous Identity Is Lost but Arterial Identity Is Not Gained During Vein Graft Adaptation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 1562-1571.	2.4	110
21	Modeling Supravalvular Aortic Stenosis Syndrome With Human Induced Pluripotent Stem Cells. Circulation, 2012, 126, 1695-1704.	1.6	106
22	Interferon-Î ³ Axis in Graft Arteriosclerosis. Circulation Research, 2007, 100, 622-632.	4.5	102
23	Caveolin-1 Regulates Atherogenesis by Attenuating Low-Density Lipoprotein Transcytosis and Vascular Inflammation Independently of Endothelial Nitric Oxide Synthase Activation. Circulation, 2019, 140, 225-239.	1.6	100
24	Interacting Mechanisms in the Pathogenesis of Cardiac Allograft Vasculopathy. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1609-1614.	2.4	98
25	Tissue-Engineered Vascular Grafts with Advanced Mechanical Strength from Human iPSCs. Cell Stem Cell, 2020, 26, 251-261.e8.	11.1	96
26	Testicular Immune Privilege Promotes Transplantation Tolerance by Altering the Balance between Memory and Regulatory T Cells. Journal of Immunology, 2005, 174, 6161-6168.	0.8	95
27	Interferon-γ Induces Human Vascular Smooth Muscle Cell Proliferation and Intimal Expansion by Phosphatidylinositol 3-Kinase–Dependent Mammalian Target of Rapamycin Raptor Complex 1 Activation. Circulation Research, 2007, 101, 560-569.	4.5	95
28	Inhibition of MicroRNA-29 Enhances Elastin Levels in Cells Haploinsufficient for Elastin and in Bioengineered Vessels—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 756-759.	2.4	94
29	Rac2 Modulates Atherosclerotic Calcification by Regulating Macrophage Interleukin-1Î ² Production. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 328-340.	2.4	91
30	Induction of Indoleamine 2,3-Dioxygenase in Vascular Smooth Muscle Cells by Interferon-Î ³ Contributes to Medial Immunoprivilege. Journal of Immunology, 2007, 179, 5246-5254.	0.8	90
31	T cell–mediated vascular dysfunction of human allografts results from IFN-γ dysregulation of NO synthase. Journal of Clinical Investigation, 2004, 114, 846-856.	8.2	90
32	Fibroblast growth factor receptor 1 is a key inhibitor of TGFβ signaling in the endothelium. Science Signaling, 2014, 7, ra90.	3.6	89
33	Interferon-Î ³ Induces Fas Trafficking and Sensitization to Apoptosis in Vascular Smooth Muscle Cells via a PI3K- and Akt-Dependent Mechanism. American Journal of Pathology, 2006, 168, 2054-2063.	3.8	86
34	CXCR3-dependent accumulation and activation of perivascular macrophages is necessary for homeostatic arterial remodeling to hemodynamic stresses. Journal of Experimental Medicine, 2010, 207, 1951-1966.	8.5	84
35	An Inflammatory Pathway of IFN-Î ³ Production in Coronary Atherosclerosis. Journal of Immunology, 2007, 178, 592-604.	0.8	83
36	Inflammatory and Immune Responses in the Arterial Media. Circulation Research, 2015, 116, 312-322.	4.5	83

3

#	Article	IF	CITATIONS
37	Interleukin (IL)-1 promotes allogeneic T cell intimal infiltration and IL-17 production in a model of human artery rejection. Journal of Experimental Medicine, 2008, 205, 3145-3158.	8.5	80
38	Transmural inflammation by interferonâ€Î³â€producing T cells correlates with outward vascular remodeling and intimal expansion of ascending thoracic aortic aneurysms. FASEB Journal, 2005, 19, 1528-1530.	0.5	78
39	The effects of vitamin D repletion on endothelial function and inflammation in patients with coronary artery disease. Vascular Medicine, 2012, 17, 394-404.	1.5	76
40	Ex vivo pretreatment of human vessels with siRNA nanoparticles provides protein silencing in endothelial cells. Nature Communications, 2017, 8, 191.	12.8	76
41	Engraftment of a vascularized human skin equivalent. FASEB Journal, 2003, 17, 2250-2256.	0.5	73
42	IDO and Regulatory T Cell Support Are Critical for Cytotoxic T Lymphocyte-Associated Ag-4 Ig-Mediated Long-Term Solid Organ Allograft Survival. Journal of Immunology, 2012, 188, 37-46.	0.8	72
43	Claudin-5 Controls Intercellular Barriers of Human Dermal Microvascular but Not Human Umbilical Vein Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 489-500.	2.4	70
44	Recruitment of CXCR3+ and CCR5+ T Cells and Production of Interferon-Î ³ -Inducible Chemokines in Rejecting Human Arteries. American Journal of Transplantation, 2005, 5, 1226-1236.	4.7	67
45	Rapamycin-treated human endothelial cells preferentially activate allogeneic regulatory T cells. Journal of Clinical Investigation, 2013, 123, 1677-1693.	8.2	65
46	Fibroblast growth factor (FGF) signaling regulates transforming growth factor beta (TGFβ)-dependent smooth muscle cell phenotype modulation. Scientific Reports, 2016, 6, 33407.	3.3	65
47	Pharmacologically Improved Contractility Protects Against Aortic Dissection in Mice With Disrupted Transforming Growth Factor-l² Signaling Despite Compromised Extracellular Matrix Properties. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 919-927.	2.4	65
48	Interferonâ€Î³ plays a nonredundant role in mediating Tâ€cell―dependent outward vascular remodeling of allogeneic human coronary arteries. FASEB Journal, 2004, 18, 606-608.	0.5	64
49	Efficient Gene Disruption in Cultured Primary Human Endothelial Cells by CRISPR/Cas9. Circulation Research, 2015, 117, 121-128.	4.5	64
50	Heparin Displaces Interferon-γ–Inducible Chemokines (IP-10, I-TAC, and Mig) Sequestered in the Vasculature and Inhibits the Transendothelial Migration and Arterial Recruitment of T Cells. Circulation, 2006, 114, 1293-1300.	1.6	63
51	Wild-type LRP6 inhibits, whereas atherosclerosis-linked LRP6 _{R611C} increases PDGF-dependent vascular smooth muscle cell proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1914-1918.	7.1	63
52	Rapamycin antagonizes TNF induction of VCAM-1 on endothelial cells by inhibiting mTORC2. Journal of Experimental Medicine, 2014, 211, 395-404.	8.5	63
53	The Effect of a Lung Cancer Care Coordination Program on Timeliness of Care. Clinical Lung Cancer, 2013, 14, 527-534.	2.6	61
54	Smooth muscle <scp>FGF</scp> / <scp>TGF</scp> β cross talk regulates atherosclerosis progression. EMBO Molecular Medicine, 2016, 8, 712-728.	6.9	61

#	Article	IF	CITATIONS
55	Pathogenesis of Systemic Air Embolism During Bronchoscopic Nd:YAG Laser Operations. Annals of Thoracic Surgery, 1998, 65, 930-934.	1.3	60
56	MyD88-dependent, superoxide-initiated inflammation is necessary for flow-mediated inward remodeling of conduit arteries. Journal of Experimental Medicine, 2008, 205, 3159-3171.	8.5	59
57	Chronic mTOR activation induces a degradative smooth muscle cell phenotype. Journal of Clinical Investigation, 2020, 130, 1233-1251.	8.2	59
58	Blocking MHC class II on human endothelium mitigates acute rejection. JCI Insight, 2016, 1, .	5.0	58
59	HUMAN ALLOGENEIC VASCULAR REJECTION AFTER ARTERIAL TRANSPLANTATION AND PERIPHERAL LYMPHOID RECONSTITUTION IN SEVERE COMBINED IMMUNODEFICIENT MICE1. Transplantation, 1999, 67, 897-903.	1.0	57
60	Vascular smooth muscle cell-derived adiponectin: A paracrine regulator of contractile phenotype. Journal of Molecular and Cellular Cardiology, 2012, 52, 474-484.	1.9	56
61	Complement Membrane Attack Complexes Assemble NLRP3 Inflammasomes Triggering IL-1 Activation of IFN-γ–Primed Human Endothelium. Circulation Research, 2019, 124, 1747-1759.	4.5	56
62	VEGF Blockade Inhibits Lymphocyte Recruitment and Ameliorates Immune-Mediated Vascular Remodeling. Circulation Research, 2010, 107, 408-417.	4.5	55
63	AIP1 Prevents Graft Arteriosclerosis by Inhibiting Interferon-γ–Dependent Smooth Muscle Cell Proliferation and Intimal Expansion. Circulation Research, 2011, 109, 418-427.	4.5	54
64	Neutralizing IL-6 Reduces Human Arterial Allograft Rejection by Allowing Emergence of CD161+ CD4+ Regulatory T Cells. Journal of Immunology, 2011, 187, 6268-6280.	0.8	54
65	Complement membrane attack complexes activate noncanonical NF-κB by forming an Akt ⁺ NIK ⁺ signalosome on Rab5 ⁺ endosomes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9686-9691.	7.1	53
66	Immunopathology of human T cell responses to skin, artery and endothelial cell grafts in the human peripheral blood lymphocyte/severe combined immunodeficient mouse. Seminars in Immunopathology, 2003, 25, 167-180.	4.0	51
67	Desmosterol suppresses macrophage inflammasome activation and protects against vascular inflammation and atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	50
68	Human Aortic Smooth Muscle Cells Promote Arteriole Formation by Coengrafted Endothelial Cells. Tissue Engineering - Part A, 2009, 15, 165-173.	3.1	48
69	Improving inÂvivo outcomes of decellularized vascular grafts via incorporation of a novel extracellular matrix. Biomaterials, 2017, 141, 63-73.	11.4	48
70	Induction of inducible NO synthase in bystander human T cells increases allogeneic responses in the vasculature. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1313-1318.	7.1	47
71	The critical role of SENP1-mediated GATA2 deSUMOylation in promoting endothelial activation in graft arteriosclerosis. Nature Communications, 2017, 8, 15426.	12.8	47
72	Integrin β3 inhibition is a therapeutic strategy for supravalvular aortic stenosis. Journal of Experimental Medicine, 2016, 213, 451-463.	8.5	46

#	Article	IF	CITATIONS
73	Deficient Circumferential Growth Is the Primary Determinant of Aortic Obstruction Attributable to Partial Elastin Deficiency. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 930-941.	2.4	45
74	Development of a Mouse Model for Evaluation of Small Diameter Vascular Grafts. Journal of Surgical Research, 2007, 139, 1-6.	1.6	39
75	Rapamycin Inhibits Smooth Muscle Cell Proliferation and Obstructive Arteriopathy Attributable to Elastin Deficiency. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1028-1035.	2.4	39
76	Combining in vivo and in vitro biomechanical data reveals key roles of perivascular tethering in central artery function. PLoS ONE, 2018, 13, e0201379.	2.5	39
77	Low Levels of Nogo-B in Human Carotid Atherosclerotic Plaques Are Associated With an Atheromatous Phenotype, Restenosis, and Stenosis Severity. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 1354-1360.	2.4	38
78	Vascular smooth muscle cells derived from inbred swine induced pluripotent stem cells for vascular tissue engineering. Biomaterials, 2017, 147, 116-132.	11.4	38
79	Interferon-Î ³ Induces X-linked Inhibitor of Apoptosis-associated Factor-1 and Noxa Expression and Potentiates Human Vascular Smooth Muscle Cell Apoptosis by STAT3 Activation. Journal of Biological Chemistry, 2008, 283, 6832-6842.	3.4	35
80	miR-1 mediated suppression of Sorcin regulates myocardial contractility through modulation of Ca2+ signaling. Journal of Molecular and Cellular Cardiology, 2012, 52, 1027-1037.	1.9	35
81	IFN-γ Primes Intact Human Coronary Arteries and Cultured Coronary Smooth Muscle Cells to Double-Stranded RNA- and Self-RNA–Induced Inflammatory Responses by Upregulating TLR3 and Melanoma Differentiation-Associated Gene 5. Journal of Immunology, 2010, 185, 1283-1294.	0.8	33
82	Disruption of TGF-Î ² signaling in smooth muscle cell prevents elastase-induced abdominal aortic aneurysm. Biochemical and Biophysical Research Communications, 2014, 454, 137-143.	2.1	33
83	SOCS1 Prevents Graft Arteriosclerosis by Preserving Endothelial Cell Function. Journal of the American College of Cardiology, 2014, 63, 21-29.	2.8	31
84	Human TNF Can Induce Nonspecific Inflammatory and Human Immune-Mediated Microvascular Injury of Pig Skin Xenografts in Immunodeficient Mouse Hosts. Journal of Immunology, 2000, 164, 6601-6609.	0.8	30
85	Endothelial Cell–Derived Interleukin-18 Released During Ischemia Reperfusion Injury Selectively Expands T Peripheral Helper Cells to Promote Alloantibody Production. Circulation, 2020, 141, 464-478.	1.6	30
86	ZFYVE21 is a complement-induced Rab5 effector that activates non-canonical NF-κB via phosphoinosotide remodeling of endosomes. Nature Communications, 2019, 10, 2247.	12.8	29
87	Development of a Humanized Mouse Model to Study the Role of Macrophages in Allograft Injury. Transplantation, 2009, 87, 189-197.	1.0	28
88	Developmental origins of mechanical homeostasis in the aorta. Developmental Dynamics, 2021, 250, 629-639.	1.8	28
89	Circulating interferon-γ–inducible Cys-X-Cys chemokine receptor 3 ligands are elevated in humans with aortic aneurysms and Cys-X-Cys chemokine receptor 3 is necessary for aneurysm formation in mice. Journal of Thoracic and Cardiovascular Surgery, 2012, 143, 704-710.	0.8	26
90	mTOR (Mechanistic Target of Rapamycin) Inhibition Decreases Mechanosignaling, Collagen Accumulation, and Stiffening of the Thoracic Aorta in Elastin-Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1657-1666.	2.4	26

#	Article	IF	CITATIONS
91	Reperfusion Injury Intensifies the Adaptive Human T Cell Alloresponse in a Human-Mouse Chimeric Artery Model. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 353-360.	2.4	25
92	Impaired von Willebrand factor adhesion and platelet response in thrombospondin-2 knockout mice. Blood, 2016, 128, 1642-1650.	1.4	25
93	Excessive adventitial stress drives inflammation-mediated fibrosis in hypertensive aortic remodelling in mice. Journal of the Royal Society Interface, 2021, 18, 20210336.	3.4	24
94	Direct Evidence for a Crucial Role of the Arterial Wall in Control of Atherosclerosis Susceptibility. Circulation, 2006, 114, 2382-2389.	1.6	23
95	Evidence supporting changes in Nogo-B levels as a marker of neointimal expansion but not adaptive arterial remodeling. Vascular Pharmacology, 2007, 46, 293-301.	2.1	22
96	Activation of human vascular cells decreases their expression of transforming growth factor-beta. Atherosclerosis, 2011, 219, 417-424.	0.8	22
97	Peroxisome Proliferator–Activated Receptor-γ Agonists Prevent In Vivo Remodeling of Human Artery Induced by Alloreactive T Cells. Circulation, 2011, 124, 196-205.	1.6	22
98	Development of a model system for preliminary evaluation of tissue-engineered vascular conduits. Journal of Pediatric Surgery, 2006, 41, 787-791.	1.6	21
99	Human Allograft Arterial Injury Is Ameliorated by Sirolimus and Cyclosporine and Correlates with Suppression of Interferon-??. Transplantation, 2006, 81, 559-566.	1.0	21
100	TNF, acting through inducibly expressed TNFR2, drives activation and cell cycle entry of c-Kit+ cardiac stem cells in ischemic heart disease. Stem Cells, 2013, 31, 1881-1892.	3.2	21
101	Complement-activated interferon-γ–primed human endothelium transpresents interleukin-15 to CD8+ T cells. Journal of Clinical Investigation, 2020, 130, 3437-3452.	8.2	21
102	HUMAN T CELLS INFILTRATE AND INJURE PIG CORONARY ARTERY GRAFTS WITH ACTIVATED BUT NOT QUIESCENT ENDOTHELIUM IN IMMUNODEFICIENT MOUSE HOSTS1. Transplantation, 2001, 71, 1622-1630.	1.0	20
103	The docking protein FRS2α is a critical regulator of VEGF receptors signaling. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5514-5519.	7.1	20
104	The role of <scp>LTBPs</scp> in <scp>TGF</scp> beta signaling. Developmental Dynamics, 2022, 251, 75-84.	1.8	20
105	The Nogo-B-PirB Axis Controls Macrophage-Mediated Vascular Remodeling. PLoS ONE, 2013, 8, e81019.	2.5	20
106	JAGGED1/NOTCH3 activation promotes aortic hypermuscularization and stenosis in elastin deficiency. Journal of Clinical Investigation, 2022, 132, .	8.2	20
107	Muscle LIM Protein Force-Sensing Mediates Sarcomeric Biomechanical Signaling in Human Familial Hypertrophic Cardiomyopathy. Circulation, 2022, 145, 1238-1253.	1.6	20
108	Right ventricle-sparing heart transplant: promising new technique for recipients with pulmonary hypertension. Annals of Thoracic Surgery, 2000, 69, 1858-1863.	1.3	19

#	Article	IF	CITATIONS
109	αvβ3â€Targeted detection of arteriopathy in transplanted human coronary arteries: an autoradiographic study. FASEB Journal, 2005, 19, 1857-1859.	0.5	19
110	Effect of left ventricular volume on results of coronary artery bypass grafting. American Journal of Cardiology, 2000, 86, 1261-1264.	1.6	18
111	Human Vascular Smooth Muscle Cells Lack Essential Costimulatory Molecules to Activate Allogeneic Memory T Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1795-1801.	2.4	18
112	Molecular Imaging of Vascular Endothelial Growth Factor Receptors in Graft Arteriosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1849-1855.	2.4	18
113	H19/TET1 axis promotes TGFâ€Î² signaling linked to endothelialâ€ŧoâ€mesenchymal transition. FASEB Journal, 2020, 34, 8625-8640.	0.5	18
114	CXCL12 Induction of Inducible Nitric Oxide Synthase in Human CD8 T Cells. Journal of Heart and Lung Transplantation, 2008, 27, 1333-1339.	0.6	17
115	Endothelial Nitric Oxide Synthase Stimulates Aneurysm Growth in Aged Mice. Journal of Vascular Research, 2008, 45, 251-258.	1.4	17
116	Disruption of TGF-β signaling in smooth muscle cell prevents flow-induced vascular remodeling. Biochemical and Biophysical Research Communications, 2014, 454, 245-250.	2.1	17
117	Progenitor-derived human endothelial cells evade alloimmunity by CRISPR/Cas9-mediated complete ablation of MHC expression. JCI Insight, 2019, 4, .	5.0	17
118	Roles of mTOR in thoracic aortopathy understood by complex intracellular signaling interactions. PLoS Computational Biology, 2021, 17, e1009683.	3.2	16
119	Further Evidence Supporting a Protective Role of Transforming Growth Factor-β (TGFβ) in Aortic Aneurysm and Dissection. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1983-1986.	2.4	15
120	Ephrin type-B receptor 4 activation reduces neointimal hyperplasia in human saphenous vein inÂvitro. Journal of Vascular Surgery, 2016, 63, 795-804.	1.1	14
121	Fas ligand and nitric oxide combination to control smooth muscle growth while sparing endothelium. Biomaterials, 2019, 212, 28-38.	11.4	14
122	Th1 Adaptive Immune Responses in Cardiac Graft Arteriosclerosis. Circulation, 2006, 114, 1561-1564.	1.6	13
123	Interferon-γ–Mediated Allograft Rejection Exacerbates Cardiovascular Disease of Hyperlipidemic Murine Transplant Recipients. Circulation Research, 2015, 117, 943-955.	4.5	12
124	Quantitative not qualitative histology differentiates aneurysmal from nondilated ascending aortas and reveals a net gain of medial components. Scientific Reports, 2021, 11, 13185.	3.3	12
125	Xenogeneic-free generation of vascular smooth muscle cells from human induced pluripotent stem cells for vascular tissue engineering. Acta Biomaterialia, 2021, 119, 155-168.	8.3	11
126	Development of a Bioartificial Vascular Pancreas. Journal of Tissue Engineering, 2021, 12, 204173142110277.	5.5	10

#	Article	IF	CITATIONS
127	Cardiac allograft vasculopathy: current review and future research directions. Cardiovascular Research, 2021, 117, 2624-2638.	3.8	10
128	An ex vivo physiologic and hyperplastic vessel culture model to study intra-arterial stent therapies. Biomaterials, 2021, 275, 120911.	11.4	9
129	Should Angiographically Disease-Free Saphenous Vein Grafts Be Replaced at the Time of Redo Coronary Artery Bypass Grafting?. Annals of Thoracic Surgery, 1998, 65, 17-23.	1.3	8
130	mTOR inhibition prevents angiotensin Il–induced aortic rupture and pseudoaneurysm but promotes dissection in Apoe-deficient mice. JCI Insight, 2022, 7, .	5.0	8
131	Alloimmune-Mediated Vascular Remodeling of Human Coronary Artery Grafts in Immunodeficient Mouse Recipients Is Independent of Preexisting Atherosclerosis. Transplantation, 2007, 83, 1501-1505.	1.0	7
132	Ex vivo isolated human vessel perfusion system for the design and assessment of nanomedicines targeted to the endothelium. Bioengineering and Translational Medicine, 2020, 5, e10154.	7.1	7
133	Periadventitial Fat. Archives of Pathology and Laboratory Medicine, 2007, 131, 346-347.	2.5	7
134	Endothelial Cell TGF-β (Transforming Growth Factor-Beta) Signaling Regulates Venous Adaptive Remodeling to Improve Arteriovenous Fistula Patency. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 868-883.	2.4	6
135	ABO blood group does not impact incidence or outcomes of surgery for acute type A aortic dissection. Scandinavian Cardiovascular Journal, 2020, 54, 124-129.	1.2	5
136	Differential inflammatory responses of the native left and right ventricle associated with donor heart preservation. Physiological Reports, 2021, 9, e15004.	1.7	4
137	Evolving Mural Defects, Dilatation, and Biomechanical Dysfunction in Angiotensin Il–Induced Thoracic Aortopathies. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 973-986.	2.4	3
138	Diagnosis of Thoracic Aortic Aneurysms by Computed Tomography Without Allometric Scaling. JAMA Network Open, 2020, 3, e2023689.	5.9	2
139	A therapeutic vascular conduit to support in vivo cell-secreted therapy. Npj Regenerative Medicine, 2021, 6, 40.	5.2	2
140	Response to Letter Regarding Article, "Ten-Eleven Translocation-2 (TET2) Is a Master Regulator of Smooth Muscle Cell Plasticity― Circulation, 2014, 130, e72.	1.6	1
141	Multimodality Imaging Involving Magnetic Resonance Facilitates Giant Symptomatic Myxoma Resection. Annals of Thoracic Surgery, 2019, 107, e15-e17.	1.3	1
142	Endothelial expression of tissue factor on saphenous vein and internal mammary artery segments. International Journal of Angiology, 2001, 10, 101-102.	0.6	0
143	Pectoralis Major Hemiosseous Flap for Paradoxical Respiration. Plastic and Reconstructive Surgery, 2006, 117, 2102-2103.	1.4	0