Mehdi Farokhi

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/968206/mehdi-farokhi-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

63 2,745 29 52 h-index g-index citations papers 66 6.6 3,495 5.54 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
63	Thermosensitive chitosan/poly(N-isopropyl acrylamide) nanoparticles embedded in aniline pentamer/silk fibroin/polyacrylamide as an electroactive injectable hydrogel for healing critical-sized calvarial bone defect in aging rat model. <i>International Journal of Biological</i>	7.9	1
62	Composite Microgels for Imaging-Monitored Tracking of the Delivery of Vascular Endothelial Growth Factor to Ischemic Muscles. <i>Biomacromolecules</i> , 2021 ,	6.9	2
61	Electrospun pectin/modified copper-based metal-organic framework (MOF) nanofibers as a drug delivery system. <i>International Journal of Biological Macromolecules</i> , 2021 , 173, 351-365	7.9	21
60	Conductive Biomaterials as Substrates for Neural Stem Cells Differentiation towards Neuronal Lineage Cells. <i>Macromolecular Bioscience</i> , 2021 , 21, e2000123	5.5	10
59	Combination Therapy of Breast Cancer by Codelivery of Doxorubicin and Survivin siRNA Using Polyethylenimine Modified Silk Fibroin Nanoparticles. <i>ACS Biomaterials Science and Engineering</i> , 2021 , 7, 1074-1087	5.5	10
58	Preparation of microfluidic-based pectin microparticles loaded carbon dots conjugated with BMP-2 embedded in gelatin-elastin-hyaluronic acid hydrogel scaffold for bone tissue engineering application. <i>International Journal of Biological Macromolecules</i> , 2021 , 184, 29-41	7.9	5
57	Nano-adjuvant based on silk fibroin for the delivery of recombinant hepatitis B surface antigen. <i>Biomaterials Science</i> , 2021 , 9, 2679-2695	7.4	O
56	Conductive biomaterials as nerve conduits: Recent advances and future challenges. <i>Applied Materials Today</i> , 2020 , 20, 100784	6.6	20
55	Poloxamer: A versatile tri-block copolymer for biomedical applications. <i>Acta Biomaterialia</i> , 2020 , 110, 37-67	10.8	79
54	Carbon Dots Conjugated with Vascular Endothelial Growth Factor for Protein Tracking in Angiogenic Therapy. <i>Langmuir</i> , 2020 , 36, 2893-2900	4	11
53	Silk Fibroin Nanoadjuvant as a Promising Vaccine Carrier to Deliver the FimH-IutA Antigen for Urinary Tract Infection. <i>ACS Biomaterials Science and Engineering</i> , 2020 , 6, 4573-4582	5.5	3
52	Bilayer Cylindrical Conduit Consisting of Electrospun Polycaprolactone Nanofibers and DSC Cross-Linked Sodium Alginate Hydrogel to Bridge Peripheral Nerve Gaps. <i>Macromolecular Bioscience</i> , 2020 , 20, e2000149	5.5	13
51	Hyaluronic Acid (HA)-Based Silk Fibroin/Zinc Oxide Core-Shell Electrospun Dressing for Burn Wound Management. <i>Macromolecular Bioscience</i> , 2020 , 20, e1900328	5.5	62
50	Functionalized silk fibroin nanofibers as drug carriers: Advantages and challenges. <i>Journal of Controlled Release</i> , 2020 , 321, 324-347	11.7	58
49	The Effect of Fibronectin Coating on Protein Corona Structure and Cellular Uptake of Single-Walled Carbon Nanotubes. <i>Precision Nanomedicine</i> , 2020 , 3, 459-470	1.2	O
48	Dual drug delivery system based on pH-sensitive silk fibroin/alginate nanoparticles entrapped in PNIPAM hydrogel for treating severe infected burn wound. <i>Biofabrication</i> , 2020 , 13, 015005	10.5	19
47	Agarose-based biomaterials for advanced drug delivery. <i>Journal of Controlled Release</i> , 2020 , 326, 523-5	543 1.7	44

(2017-2020)

Fabricating an electroactive injectable hydrogel based on pluronic-chitosan/aniline-pentamer containing angiogenic factor for functional repair of the hippocampus ischemia rat model. <i>Materials Science and Engineering C</i> , 2020 , 117, 111328	8.3	13
Vancomycin loaded halloysite nanotubes embedded in silk fibroin hydrogel applicable for bone tissue engineering. <i>International Journal of Polymeric Materials and Polymeric Biomaterials</i> , 2020 , 69, 32-43	3	12
Silk fibroin/alumina nanoparticle scaffold using for osteogenic differentiation of rabbit adipose-derived stem cells. <i>Materialia</i> , 2020 , 9, 100518	3.2	12
A silk fibroin/decellularized extract of Wharton & jelly hydrogel intended for cartilage tissue engineering. <i>Progress in Biomaterials</i> , 2019 , 8, 31-42	4.4	15
Status and future scope of plant-based green hydrogels in biomedical engineering. <i>Applied Materials Today</i> , 2019 , 16, 213-246	6.6	100
Electroactive bio-epoxy incorporated chitosan-oligoaniline as an advanced hydrogel coating for neural interfaces. <i>Progress in Organic Coatings</i> , 2019 , 131, 389-396	4.8	47
Silk fibroin scaffolds for common cartilage injuries: Possibilities for future clinical applications. <i>European Polymer Journal</i> , 2019 , 115, 251-267	5.2	48
Endothelial and Osteoblast Differentiation of Adipose-Derived Mesenchymal Stem Cells Using a Cobalt-Doped CaP/Silk Fibroin Scaffold. <i>ACS Biomaterials Science and Engineering</i> , 2019 , 5, 2134-2146	5.5	13
Functionalized theranostic nanocarriers with bio-inspired polydopamine for tumor imaging and chemo-photothermal therapy. <i>Journal of Controlled Release</i> , 2019 , 309, 203-219	11.7	63
New insights into designing hybrid nanoparticles for lung cancer: Diagnosis and treatment. <i>Journal of Controlled Release</i> , 2019 , 295, 250-267	11.7	69
Evaluation of the toxicity effects of silk fibroin on human lymphocytes and monocytes. <i>Journal of Biochemical and Molecular Toxicology</i> , 2018 , 32, e22056	3.4	7
Applications of a metabolic network model of mesenchymal stem cells for controlling cell proliferation and differentiation. <i>Cytotechnology</i> , 2018 , 70, 331-338	2.2	7
Silk fibroin/hydroxyapatite composites for bone tissue engineering. <i>Biotechnology Advances</i> , 2018 , 36, 68-91	17.8	224
Overview of Silk Fibroin Use in Wound Dressings. <i>Trends in Biotechnology</i> , 2018 , 36, 907-922	15.1	198
Polyurethane foam/nano hydroxyapatite composite as a suitable scaffold for bone tissue regeneration. <i>Materials Science and Engineering C</i> , 2018 , 82, 130-140	8.3	59
Preparation of a Codelivery System Based on Vancomycin/Silk Scaffold Containing Silk Nanoparticle Loaded VEGF. <i>ACS Biomaterials Science and Engineering</i> , 2018 , 4, 2836-2846	5.5	22
Sustainable Release of Vancomycin from Silk Fibroin Nanoparticles for Treating Severe Bone Infection in Rat Tibia Osteomyelitis Model. <i>ACS Applied Materials & Company Compan</i>	9.5	88
Letter to editor for supporting "Characterization of alginate-brushite in-situ hydrogel composites". <i>Materials Science and Engineering C</i> , 2017 , 74, 410-412	8.3	3
	containing angiogenic factor for functional repair of the hippocampus ischemia rat model. <i>Materials Science and Engineering C</i> , 2020, 117, 111328 Vancomycin loaded halloysite nanotubes embedded in silk fibroin hydrogel applicable for bone tissue engineering. <i>International Journal of Polymeric Materials and Polymeric Biomaterials</i> , 2020, 69, 32-43 Silk fibroin/alumina nanoparticle scaffold using for osteogenic differentiation of rabbit adipose-derived stem cells. <i>Materialia</i> , 2020, 9, 100518 A silk fibroin/decellularized extract of Wharton's jelly hydrogel intended for cartilage tissue engineering. <i>Progress in Biomaterials</i> , 2019, 8, 31-42 Status and future scope of plant-based green hydrogels in biomedical engineering. <i>Applied Materials</i> Today, 2019, 16, 213-246 Electroactive bio-epoxy incorporated chitosan-oligoaniline as an advanced hydrogel coating for neural interfaces. <i>Progress in Organic Coatings</i> , 2019, 131, 389-396 Silk fibroin scaffolds for common cartilage injuries: Possibilities for future clinical applications. <i>European Polymer Journal</i> , 2019, 115, 251-267 Endothelial and Osteoblast Differentiation of Adipose-Derived Mesenchymal Stem Cells Using a Cobalt-Doped Cal-fylisk Fibroin Scaffold. <i>ACS Biomaterials Science and Engineering</i> , 2019, 5, 2134-2146 Functionalized theranostic nanocarriers with bio-inspired polydopamine for tumor imaging and chemo-photothermal therapy. <i>Journal of Controlled Release</i> , 2019, 309, 203-219 New insights into designing hybrid nanoparticles for lung cancer: Diagnosis and treatment. <i>Journal of Controlled Release</i> , 2019, 295, 250-267 Evaluation of the toxicity effects of silk fibroin on human lymphocytes and monocytes. <i>Journal of Biochemical and Molecular Toxicology</i> , 2018, 32, e22056 Applications of a metabolic network model of mesenchymal stem cells for controlling cell prolliferation and differentiation. <i>Cytotechnology</i> , 2018, 70, 331-338 Silk Fibroin/hydroxyapatite composites for bone tissue engineering. <i>Biotechnology Advances</i> , 2018, 36, 68-91 O	containing angiogenic factor for functional repair of the hippocampus ischemia rat model. <i>Materials Science and Engineering C</i> , 2020, 117, 11128 Vancomycin loaded halloysite nanotubes embedded in silk fibroin hydrogel applicable for bone tissue engineering. <i>International Journal of Polymeric Materials and Polymeric Biomaterials</i> , 2020, 6, 93-24-3 Silk fibroin/alumina nanoparticle scaffold using for osteogenic differentiation of rabbit adipose-derived stem cells. <i>Materialia</i> , 2020, 9, 100518 A silk fibroin/decellularized extract of Wharton Vigelly hydrogel intended for cartilage tissue engineering. <i>Progress in Biomaterials</i> , 2019, 8, 31-42 Status and future scope of plant-based green hydrogels in biomedical engineering. <i>Applied Materials Today</i> , 2019, 16, 213-246 Electroactive bio-epoxy incorporated chitosan-oligoaniline as an advanced hydrogel coating for neural interfaces. <i>Progress in Organic Coatings</i> , 2019, 131, 389-396 Silk fibroin scaffolds for common cartilage injuries: Possibilities for future clinical applications. <i>European Polymer Journal</i> , 2019, 115, 251-267 Endothelial and Osteoblast Differentiation of Adipose-Derived Mesenchymal Stem Cells Using a Cobalt-Doped CaP/Silk Fibroin Scaffold. <i>ACS Biomaterials Science and Engineering</i> , 2019, 5, 2134-2146 Functionalized theranostic nanocarriers with bio-inspired polydopamine for tumor imaging and chemo-photothermal therapy. <i>Journal of Controlled Release</i> , 2019, 309, 203-219 New insights into designing hybrid nanoparticles for lung cancer: Diagnosis and treatment. <i>Journal of Controlled Release</i> , 2019, 295, 250-267 Evaluation of the toxicity effects of silk fibroin on human lymphocytes and monocytes. <i>Journal of Foliational and Molecular Toxicology</i> , 2018, 32, e22056 Applications of a metabolic network model of mesenchymal stem cells for controlling cell proliferation and differentiation. <i>Cytotechnology</i> , 2018, 70, 331-338 Silk Fibroin/hydroxyapatite composites for bone tissue engineering. <i>Biotechnology Advances</i> , 2018, 83 Silk Fibro

28	Silk fibroin/kappa-carrageenan composite scaffolds with enhanced biomimetic mineralization for bone regeneration applications. <i>Materials Science and Engineering C</i> , 2017 , 76, 951-958	8.3	38
27	Prospects of siRNA applications in regenerative medicine. <i>International Journal of Pharmaceutics</i> , 2017 , 524, 312-329	6.5	19
26	Electrospun nerve guide scaffold of poly(Ecaprolactone)/collagen/nanobioglass: an in vitro study in peripheral nerve tissue engineering. <i>Journal of Biomedical Materials Research - Part A</i> , 2017 , 105, 1960) ⁵ 1 ⁴ 972	47
25	Targeted Delivery System Based on Gemcitabine-Loaded Silk Fibroin Nanoparticles for Lung Cancer Therapy. <i>ACS Applied Materials & Interfaces</i> , 2017 , 9, 31600-31611	9.5	61
24	Prospects of peripheral nerve tissue engineering using nerve guide conduits based on silk fibroin protein and other biopolymers. <i>International Materials Reviews</i> , 2017 , 62, 367-391	16.1	43
23	Effects of Electromagnetic Stimulation on Gene Expression of Mesenchymal Stem Cells and Repair of Bone Lesions. <i>Cell Journal</i> , 2017 , 19, 34-44	2.4	12
22	Characterization of alginate-brushite in-situ hydrogel composites. <i>Materials Science and Engineering C</i> , 2016 , 67, 502-510	8.3	20
21	Importance of dual delivery systems for bone tissue engineering. <i>Journal of Controlled Release</i> , 2016 , 225, 152-69	11.7	113
20	Nanoclay-reinforced electrospun chitosan/PVA nanocomposite nanofibers for biomedical applications. <i>RSC Advances</i> , 2015 , 5, 10479-10487	3.7	99
19	The effect of fibronectin on structural and biological properties of single walled carbon nanotube. <i>Applied Surface Science</i> , 2015 , 339, 85-93	6.7	7
18	Silk fibroin nanoparticle as a novel drug delivery system. <i>Journal of Controlled Release</i> , 2015 , 206, 161-76	5 11.7	227
17	Silk as a potential candidate for bone tissue engineering. <i>Journal of Controlled Release</i> , 2015 , 215, 112-2	8 1.7	100
16	Induction of spontaneous neo-angiogenesis and tube formation in human endometrial stem cells by bioglass. <i>Journal of Medical Hypotheses and Ideas</i> , 2015 , 9, 94-98		7
15	Effect of magnesium substitution on structural and biological properties of synthetic hydroxyapatite powder. <i>Materials Express</i> , 2015 , 5, 41-48	1.3	19
14	Structural and functional changes of silk fibroin scaffold due to hydrolytic degradation. <i>Journal of Applied Polymer Science</i> , 2014 , 131, n/a-n/a	2.9	28
13	In vitro biocompatibility evaluations of hyperbranched polyglycerol hybrid nanostructure as a candidate for nanomedicine applications. <i>Journal of Materials Science: Materials in Medicine</i> , 2014 , 25, 499-506	4.5	35
12	Bio-hybrid silk fibroin/calcium phosphate/PLGA nanocomposite scaffold to control the delivery of vascular endothelial growth factor. <i>Materials Science and Engineering C</i> , 2014 , 35, 401-10	8.3	76
11	In vitro evaluation of biomimetic nanocomposite scaffold using endometrial stem cell derived osteoblast-like cells. <i>Tissue and Cell</i> , 2013 , 45, 328-37	2.7	35

LIST OF PUBLICATIONS

10	Sustained release of platelet-derived growth factor and vascular endothelial growth factor from silk/calcium phosphate/PLGA based nanocomposite scaffold. <i>International Journal of Pharmaceutics</i> , 2013 , 454, 216-25	6.5	59	
9	A biosynthetic nerve guide conduit based on silk/SWNT/fibronectin nanocomposite for peripheral nerve regeneration. <i>PLoS ONE</i> , 2013 , 8, e74417	3.7	78	
8	Essential Functionality of Endometrial and Adipose Stem Cells in Normal and Mechanically Motivated Conditions. <i>Journal of Biomaterials and Tissue Engineering</i> , 2013 , 3, 581-588	0.3	2	
7	Porous crosslinked poly(Eaprolactone fumarate)/nanohydroxyapatite composites for bone tissue engineering. <i>Journal of Biomedical Materials Research - Part A</i> , 2012 , 100, 1051-60	5.4	24	
6	Enhancement of neural cell lines proliferation using nano-structured chitosan/poly(vinyl alcohol) scaffolds conjugated with nerve growth factor. <i>Carbohydrate Polymers</i> , 2011 , 86, 526-535	10.3	54	
5	Fabrication of porous chitosan/poly(vinyl alcohol) reinforced single-walled carbon nanotube nanocomposites for neural tissue engineering. <i>Journal of Biomedical Nanotechnology</i> , 2011 , 7, 276-84	4	86	
4	Fabrication and characterization of poly(D,L-lactide-co-glycolide)/hydroxyapatite nanocomposite scaffolds for bone tissue regeneration. <i>Journal of Biomedical Materials Research - Part A</i> , 2010 , 94, 137-4	45 ^{.4}	52	
3	Biocompatibility evaluation of HDPE-UHMWPE reinforced ETCP nanocomposites using highly purified human osteoblast cells. <i>Journal of Biomedical Materials Research - Part A</i> , 2010 , 95, 1074-83	5.4	20	
2	Synthesis of nano ETCP and the effects on the mechanical and biological properties of ETCP/HDPE/UHMWPE nanocomposites. <i>Polymer Composites</i> , 2010 , 31, 1745-1753	3	21	
1	Silk Fibroin Nanoparticles Functionalized with Fibronectin for Release of Vascular Endothelial Growth Factor to Enhance Angiogenesis. <i>Journal of Natural Fibers</i> ,1-12	1.8	1	