List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/968206/publications.pdf Version: 2024-02-01

Μεήρι Ελροκήι

#	Article	IF	CITATIONS
1	Overview of Silk Fibroin Use in Wound Dressings. Trends in Biotechnology, 2018, 36, 907-922.	4.9	330
2	Silk fibroin/hydroxyapatite composites for bone tissue engineering. Biotechnology Advances, 2018, 36, 68-91.	6.0	320
3	Silk fibroin nanoparticle as a novel drug delivery system. Journal of Controlled Release, 2015, 206, 161-176.	4.8	304
4	Poloxamer: A versatile tri-block copolymer for biomedical applications. Acta Biomaterialia, 2020, 110, 37-67.	4.1	188
5	Status and future scope of plant-based green hydrogels in biomedical engineering. Applied Materials Today, 2019, 16, 213-246.	2.3	154
6	Importance of dual delivery systems for bone tissue engineering. Journal of Controlled Release, 2016, 225, 152-169.	4.8	146
7	Silk as a potential candidate for bone tissue engineering. Journal of Controlled Release, 2015, 215, 112-128.	4.8	135
8	Sustainable Release of Vancomycin from Silk Fibroin Nanoparticles for Treating Severe Bone Infection in Rat Tibia Osteomyelitis Model. ACS Applied Materials & Interfaces, 2017, 9, 5128-5138.	4.0	135
9	Agarose-based biomaterials for advanced drug delivery. Journal of Controlled Release, 2020, 326, 523-543.	4.8	134
10	Nanoclay-reinforced electrospun chitosan/PVA nanocomposite nanofibers for biomedical applications. RSC Advances, 2015, 5, 10479-10487.	1.7	129
11	Functionalized silk fibroin nanofibers as drug carriers: Advantages and challenges. Journal of Controlled Release, 2020, 321, 324-347.	4.8	125
12	New insights into designing hybrid nanoparticles for lung cancer: Diagnosis and treatment. Journal of Controlled Release, 2019, 295, 250-267.	4.8	119
13	Hyaluronic Acid (HA)â€Based Silk Fibroin/Zinc Oxide Core–Shell Electrospun Dressing for Burn Wound Management. Macromolecular Bioscience, 2020, 20, e1900328.	2.1	110
14	Functionalized theranostic nanocarriers with bio-inspired polydopamine for tumor imaging and chemo-photothermal therapy. Journal of Controlled Release, 2019, 309, 203-219.	4.8	107
15	Fabrication of Porous Chitosan/Poly(vinyl alcohol) Reinforced Single-Walled Carbon Nanotube Nanocomposites for Neural Tissue Engineering. Journal of Biomedical Nanotechnology, 2011, 7, 276-284.	0.5	101
16	A Biosynthetic Nerve Guide Conduit Based on Silk/SWNT/Fibronectin Nanocomposite for Peripheral Nerve Regeneration. PLoS ONE, 2013, 8, e74417.	1.1	90
17	Bio-hybrid silk fibroin/calcium phosphate/PLGA nanocomposite scaffold to control the delivery of vascular endothelial growth factor. Materials Science and Engineering C, 2014, 35, 401-410.	3.8	86
18	Targeted Delivery System Based on Gemcitabine-Loaded Silk Fibroin Nanoparticles for Lung Cancer Therapy. ACS Applied Materials & Interfaces, 2017, 9, 31600-31611.	4.0	86

#	Article	IF	CITATIONS
19	Polyurethane foam/nano hydroxyapatite composite as a suitable scaffold for bone tissue regeneration. Materials Science and Engineering C, 2018, 82, 130-140.	3.8	76
20	Silk fibroin scaffolds for common cartilage injuries: Possibilities for future clinical applications. European Polymer Journal, 2019, 115, 251-267.	2.6	71
21	Sustained release of platelet-derived growth factor and vascular endothelial growth factor from silk/calcium phosphate/PLGA based nanocomposite scaffold. International Journal of Pharmaceutics, 2013, 454, 216-225.	2.6	70
22	Electroactive bio-epoxy incorporated chitosan-oligoaniline as an advanced hydrogel coating for neural interfaces. Progress in Organic Coatings, 2019, 131, 389-396.	1.9	70
23	Electrospun pectin/modified copper-based metal–organic framework (MOF) nanofibers as a drug delivery system. International Journal of Biological Macromolecules, 2021, 173, 351-365.	3.6	67
24	Enhancement of neural cell lines proliferation using nano-structured chitosan/poly(vinyl alcohol) scaffolds conjugated with nerve growth factor. Carbohydrate Polymers, 2011, 86, 526-535.	5.1	65
25	Prospects of peripheral nerve tissue engineering using nerve guide conduits based on silk fibroin protein and other biopolymers. International Materials Reviews, 2017, 62, 367-391.	9.4	62
26	Silk fibroin/kappa-carrageenan composite scaffolds with enhanced biomimetic mineralization for bone regeneration applications. Materials Science and Engineering C, 2017, 76, 951-958.	3.8	60
27	Electrospun nerve guide scaffold of poly(εâ€caprolactone)/collagen/nanobioglass: an <i>in vitro</i> study in peripheral nerve tissue engineering. Journal of Biomedical Materials Research - Part A, 2017, 105, 1960-1972.	2.1	57
28	Fabrication and characterization of poly(<scp>D,L</scp> ″actideâ€ <i>co</i> â€glycolide)/hydroxyapatite nanocomposite scaffolds for bone tissue regeneration. Journal of Biomedical Materials Research - Part A, 2010, 94A, 137-145.	2.1	54
29	Dual drug delivery system based on pH-sensitive silk fibroin/alginate nanoparticles entrapped in PNIPAM hydrogel for treating severe infected burn wound. Biofabrication, 2021, 13, 015005.	3.7	49
30	Conductive biomaterials as nerve conduits: Recent advances and future challenges. Applied Materials Today, 2020, 20, 100784.	2.3	45
31	Combination Therapy of Breast Cancer by Codelivery of Doxorubicin and Survivin siRNA Using Polyethylenimine Modified Silk Fibroin Nanoparticles. ACS Biomaterials Science and Engineering, 2021, 7, 1074-1087.	2.6	40
32	In vitro evaluation of biomimetic nanocomposite scaffold using endometrial stem cell derived osteoblast-like cells. Tissue and Cell, 2013, 45, 328-337.	1.0	39
33	A silk fibroin/decellularized extract of Wharton's jelly hydrogel intended for cartilage tissue engineering. Progress in Biomaterials, 2019, 8, 31-42.	1.8	39
34	Fabricating an electroactive injectable hydrogel based on pluronic-chitosan/aniline-pentamer containing angiogenic factor for functional repair of the hippocampus ischemia rat model. Materials Science and Engineering C, 2020, 117, 111328.	3.8	39
35	Preparation of a Codelivery System Based on Vancomycin/Silk Scaffold Containing Silk Nanoparticle Loaded VEGF. ACS Biomaterials Science and Engineering, 2018, 4, 2836-2846.	2.6	36
36	In vitro biocompatibility evaluations of hyperbranched polyglycerol hybrid nanostructure as a candidate for nanomedicine applications. Journal of Materials Science: Materials in Medicine, 2014, 25, 499-506.	1.7	35

#	Article	IF	CITATIONS
37	Conductive Biomaterials as Substrates for Neural Stem Cells Differentiation towards Neuronal Lineage Cells. Macromolecular Bioscience, 2021, 21, e2000123.	2.1	34
38	Vancomycin loaded halloysite nanotubes embedded in silk fibroin hydrogel applicable for bone tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, 69, 32-43.	1.8	33
39	Structural and functional changes of silk fibroin scaffold due to hydrolytic degradation. Journal of Applied Polymer Science, 2014, 131, .	1.3	32
40	Preparation of microfluidic-based pectin microparticles loaded carbon dots conjugated with BMP-2 embedded in gelatin-elastin-hyaluronic acid hydrogel scaffold for bone tissue engineering application. International Journal of Biological Macromolecules, 2021, 184, 29-41.	3.6	32
41	Prospects of siRNA applications in regenerative medicine. International Journal of Pharmaceutics, 2017, 524, 312-329.	2.6	28
42	Porous crosslinked poly(εâ€caprolactone fumarate)/nanohydroxyapatite composites for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2012, 100A, 1051-1060.	2.1	26
43	Bilayer Cylindrical Conduit Consisting of Electrospun Polycaprolactone Nanofibers and DSC Crossâ€Linked Sodium Alginate Hydrogel to Bridge Peripheral Nerve Gaps. Macromolecular Bioscience, 2020, 20, e2000149.	2.1	26
44	Endothelial and Osteoblast Differentiation of Adipose-Derived Mesenchymal Stem Cells Using a Cobalt-Doped CaP/Silk Fibroin Scaffold. ACS Biomaterials Science and Engineering, 2019, 5, 2134-2146.	2.6	25
45	Effect of magnesium substitution on structural and biological properties of synthetic hydroxyapatite powder. Materials Express, 2015, 5, 41-48.	0.2	24
46	Carbon Dots Conjugated with Vascular Endothelial Growth Factor for Protein Tracking in Angiogenic Therapy. Langmuir, 2020, 36, 2893-2900.	1.6	24
47	Silk fibroin/alumina nanoparticle scaffold using for osteogenic differentiation of rabbit adipose-derived stem cells. Materialia, 2020, 9, 100518.	1.3	23
48	Dual drug delivery system of teicoplanin and phenamil based on pH-sensitive silk fibroin/sodium alginate hydrogel scaffold for treating chronic bone infection. , 2022, 139, 213032.		23
49	Synthesis of nano $\hat{l}^2 \hat{a} \in TCP$ and the effects on the mechanical and biological properties of $\hat{l}^2 \hat{a} \in TCP/HDPE/UHMWPE$ nanocomposites. Polymer Composites, 2010, 31, 1745-1753.	2.3	22
50	Characterization of alginate-brushite in-situ hydrogel composites. Materials Science and Engineering C, 2016, 67, 502-510.	3.8	22
51	Biocompatibility evaluation of HDPEâ€UHMWPE reinforced βâ€TCP nanocomposites using highly purified human osteoblast cells. Journal of Biomedical Materials Research - Part A, 2010, 95A, 1074-1083.	2.1	21
52	Effects of Electromagnetic Stimulation on Gene Expression of Mesenchymal Stem Cells and Repair of Bone Lesions. Cell Journal, 2017, 19, 34-44.	0.2	16
53	Silk Fibroin Nanoadjuvant as a Promising Vaccine Carrier to Deliver the FimH-lutA Antigen for Urinary Tract Infection. ACS Biomaterials Science and Engineering, 2020, 6, 4573-4582.	2.6	13
54	Induction of spontaneous neo-angiogenesis and tube formation in human endometrial stem cells by bioglass. Journal of Medical Hypotheses and Ideas, 2015, 9, 94-98.	0.7	12

#	Article	IF	CITATIONS
55	Thermosensitive chitosan/poly(N-isopropyl acrylamide) nanoparticles embedded in aniline pentamer/silk fibroin/polyacrylamide as an electroactive injectable hydrogel for healing critical-sized calvarial bone defect in aging rat model. International Journal of Biological Macromolecules, 2022, 213, 352-368.	3.6	12
56	Evaluation of the toxicity effects of silk fibroin on human lymphocytes and monocytes. Journal of Biochemical and Molecular Toxicology, 2018, 32, e22056.	1.4	11
57	Applications of a metabolic network model of mesenchymal stem cells for controlling cell proliferation and differentiation. Cytotechnology, 2018, 70, 331-338.	0.7	9
58	The effect of fibronectin on structural and biological properties of single walled carbon nanotube. Applied Surface Science, 2015, 339, 85-93.	3.1	7
59	Nanocomposite pectin fibers incorporating folic acid-decorated carbon quantum dots. International Journal of Biological Macromolecules, 2022, 216, 605-617.	3.6	7
60	Nano-adjuvant based on silk fibroin for the delivery of recombinant hepatitis B surface antigen. Biomaterials Science, 2021, 9, 2679-2695.	2.6	5
61	Essential Functionality of Endometrial and Adipose Stem Cells in Normal and Mechanically Motivated Conditions. Journal of Biomaterials and Tissue Engineering, 2013, 3, 581-588.	0.0	4
62	Silk Fibroin Nanoparticles Functionalized with Fibronectin for Release of Vascular Endothelial Growth Factor to Enhance Angiogenesis. Journal of Natural Fibers, 2022, 19, 9223-9234.	1.7	4
63	Composite Microgels for Imaging-Monitored Tracking of the Delivery of Vascular Endothelial Growth Factor to Ischemic Muscles. Biomacromolecules, 2021, , .	2.6	4
64	Letter to editor for supporting "Characterization of alginate-brushite in-situ hydrogel composites― Materials Science and Engineering C, 2017, 74, 410-412.	3.8	3
65	The Effect of Fibronectin Coating on Protein Corona Structure and Cellular Uptake of Single-Walled Carbon Nanotubes. Precision Nanomedicine, 2020, 3, 459-470.	0.4	1
66	Fabrication of Silk Scaffold Containing Simvastatin-Loaded Silk Fibroin Nanoparticles for Regenerating Bone Defects. Iranian Biomedical Journal, 2021, , .	0.4	0