

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9681938/publications.pdf Version: 2024-02-01

LU FANC

#	Article	IF	CITATIONS
1	Plant-inspired adhesive and tough hydrogel based on Ag-Lignin nanoparticles-triggered dynamic redox catechol chemistry. Nature Communications, 2019, 10, 1487.	12.8	675
2	Transparent, Adhesive, and Conductive Hydrogel for Soft Bioelectronics Based on Light-Transmitting Polydopamine-Doped Polypyrrole Nanofibrils. Chemistry of Materials, 2018, 30, 5561-5572.	6.7	331
3	A strong, tough, and osteoconductive hydroxyapatite mineralized polyacrylamide/dextran hydrogel for bone tissue regeneration. Acta Biomaterialia, 2019, 88, 503-513.	8.3	143
4	Bioinspired Highly Anisotropic, Ultrastrong and Stiff, and Osteoconductive Mineralized Wood Hydrogel Composites for Bone Repair. Advanced Functional Materials, 2021, 31, 2010068.	14.9	107
5	Mussel-inspired dopamine oligomer intercalated tough and resilient gelatin methacryloyl (GelMA) hydrogels for cartilage regeneration. Journal of Materials Chemistry B, 2019, 7, 1716-1725.	5.8	105
6	A Musselâ€Inspired Persistent ROSâ€Scavenging, Electroactive, and Osteoinductive Scaffold Based on Electrochemicalâ€Driven In Situ Nanoassembly. Small, 2019, 15, e1805440.	10.0	95
7	A resilient and flexible chitosan/silk cryogel incorporated Ag/Sr co-doped nanoscale hydroxyapatite for osteoinductivity and antibacterial properties. Journal of Materials Chemistry B, 2018, 6, 7427-7438.	5.8	56
8	In Vivo Curdlan/Cellulose Bionanocomposite Synthesis by Genetically Modified <i>Gluconacetobacter xylinus</i> . Biomacromolecules, 2015, 16, 3154-3160.	5.4	45
9	Experimental and simulation studies of strontium/fluoride-codoped hydroxyapatite nanoparticles with osteogenic and antibacterial activities. Colloids and Surfaces B: Biointerfaces, 2019, 182, 110359.	5.0	43
10	Engineering High-Resolution Micropatterns Directly onto Titanium with Optimized Contact Guidance to Promote Osteogenic Differentiation and Bone Regeneration. ACS Applied Materials & Interfaces, 2019, 11, 43888-43901.	8.0	35
11	Cancellous bone-like porous Fe@Zn scaffolds with core-shell-structured skeletons for biodegradable bone implants. Acta Biomaterialia, 2021, 121, 665-681.	8.3	32
12	Cancellous-Bone-like Porous Iron Scaffold Coated with Strontium Incorporated Octacalcium Phosphate Nanowhiskers for Bone Regeneration. ACS Biomaterials Science and Engineering, 2019, 5, 509-518.	5.2	31
13	Novel niobium and silver toughened hydroxyapatite nanocomposites with enhanced mechanical and biological properties for load-bearing bone implants. Applied Materials Today, 2019, 15, 531-542.	4.3	23
14	Controlled pVEGF delivery via a gene-activated matrix comprised of a peptide-modified non-viral vector and a nanofibrous scaffold for skin wound healing. Acta Biomaterialia, 2022, 140, 149-162.	8.3	22
15	The Synergy of Topographical Micropatterning and Ta TaCu Bilayered Thin Film on Titanium Implants Enables Dualâ€Functions of Enhanced Osteogenesis and Antiâ€Infection. Advanced Healthcare Materials, 2021, 10, 2002020.	7.6	20
16	A high strength, wear and corrosion-resistant, antibacterial and biocompatible Nb-5 at.% Ag alloy for dental and orthopedic implants. Journal of Materials Science and Technology, 2021, 80, 266-278.	10.7	11
17	Ultrafine-grained Nb-Cu immiscible alloy implants for hard tissue repair: Fabrication, characterization, and in vitro and in vivo evaluation. Journal of Materials Science and Technology, 2022, 127, 214-224.	10.7	3