

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/967934/publications.pdf Version: 2024-02-01

leili

#	Article	IF	CITATIONS
1	Using Organic Synthesis and Chemical Analysis to Understand the Photochemistry of Spore Photoproduct and Other Pyrimidine Dimers. Synlett, 2018, 29, 15-33.	1.0	2
2	Spore photoproduct within DNA is a surprisingly poor substrate for its designated repair enzyme—The spore photoproduct lyase. DNA Repair, 2017, 53, 31-42.	1.3	4
3	Indications of 5′ to 3′ Interbase Electron Transfer as the First Step of Pyrimidine Dimer Formation Probed by a Dinucleotide Analog. Chemistry - A European Journal, 2017, 23, 7526-7537.	1.7	8
4	Kinetic Isotope Effects and Hydrogen/Deuterium Exchange Reveal Large Conformational Changes During the Catalysis of the <i>Clostridium acetobutylicum</i> Spore Photoproduct Lyase. Photochemistry and Photobiology, 2017, 93, 331-342.	1.3	3
5	Insights into the Activity Change of Spore Photoproduct Lyase Induced by Mutations at a Peripheral Glycine Residue. Frontiers in Chemistry, 2017, 5, 14.	1.8	1
6	EPR Study of UV-Irradiated Thymidine Microcrystals Supports Radical Intermediates in Spore Photoproduct Formation. Journal of Physical Chemistry B, 2016, 120, 10923-10931.	1.2	3
7	Reversible Hydrolysis Reaction with the Spore Photoproduct under Alkaline Conditions. Journal of Organic Chemistry, 2016, 81, 8570-8576.	1.7	0
8	Photochemistry and Photobiology of the Spore Photoproduct: A 50‥ear Journey. Photochemistry and Photobiology, 2015, 91, 1263-1290.	1.3	50
9	Spore Photoproduct Lyase: The Known, the Controversial, and the Unknown. Journal of Biological Chemistry, 2015, 290, 4003-4009.	1.6	31
10	Reactivity of Damaged Pyrimidines: Formation of a Schiff Base Intermediate at the Glycosidic Bond of Saturated Dihydrouridine. Journal of the American Chemical Society, 2015, 137, 3318-3329.	6.6	5
11	Photochemical Reactions of Microcrystalline Thymidine. Organic Letters, 2015, 17, 824-827.	2.4	4
12	Reactivity of Damaged Pyrimidines: DNA Cleavage via Hemiaminal Formation at the C4 Positions of the Saturated Thymine of Spore Photoproduct and Dihydrouridine. Journal of the American Chemical Society, 2014, 136, 12938-12946.	6.6	9
13	An Unexpected Deamination Reaction after Hydrolysis of the Pyrimidine (6-4) Pyrimidone Photoproduct. Organic Letters, 2014, 16, 5076-5079.	2.4	6
14	Unusually Large Deuterium Discrimination during Spore Photoproduct Formation. Journal of Organic Chemistry, 2014, 79, 4843-4851.	1.7	6
15	The structure of an authentic spore photoproduct lesion in DNA suggests a basis for recognition. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 752-759.	2.5	14
16	Examining the base stacking interaction in a dinucleotide context via reversible cyclobutane dimer analogue formation under UV irradiation. RSC Advances, 2013, 3, 19545.	1.7	1
17	Chemical Syntheses of Oligodeoxyribonucleotides Containing Spore Photoproduct. Journal of Organic Chemistry, 2013, 78, 3021-3029.	1.7	15
18	Oxidation and Reduction of the 5â€(2â€2â€Deoxyuridinyl)methyl Radical. Angewandte Chemie - International Edition, 2013, 52, 5594-5598.	7.2	25

Lei Li

#	Article	IF	CITATIONS
19	A Radical Transfer Pathway in Spore Photoproduct Lyase. Biochemistry, 2013, 52, 3041-3050.	1.2	32
20	The Enzyme-Mediated Direct Reversal of a Dithymine Photoproduct in Germinating Endospores. International Journal of Molecular Sciences, 2013, 14, 13137-13153.	1.8	8
21	Correction to Probing the Reaction Mechanism of Spore Photoproduct Lyase (SPL) via Diastereoselectively Labeled Dinucleotide SP TpT Substrates. Journal of the American Chemical Society, 2012, 134, 20858-20858.	6.6	1
22	Mechanistic studies of the radical SAM enzyme spore photoproduct lyase (SPL). Biochimica Et Biophysica Acta - Proteins and Proteomics, 2012, 1824, 1264-1277.	1.1	15
23	Mechanistic Studies of the Spore Photoproduct Lyase via a Single Cysteine Mutation. Biochemistry, 2012, 51, 7173-7188.	1.2	31
24	Expanding the Horizon of the Thymine Isostere Biochemistry: Unique Cyclobutane Dimers Formed by Photoreaction between a Thymine and a Toluene Residue in the Dinucleotide Framework. Chemistry - A European Journal, 2012, 18, 7823-7833.	1.7	6
25	Probing the Reaction Mechanism of Spore Photoproduct Lyase (SPL) via Diastereoselectively Labeled Dinucleotide SP TpT Substrates. Journal of the American Chemical Society, 2011, 133, 10434-10447.	6.6	34
26	Chemical Synthesis, Crystal Structure and Enzymatic Evaluation of a Dinucleotide Spore Photoproduct Analogue Containing a Formacetal Linker. Chemistry - A European Journal, 2011, 17, 9658-9668.	1.7	22
27	Adenosyl Radical: Reagent and Catalyst in Enzyme Reactions. ChemBioChem, 2010, 11, 604-621.	1.3	95
28	Elucidation of Sporeâ€Photoproduct Formation by Isotope Labeling. Angewandte Chemie - International Edition, 2010, 49, 9926-9929.	7.2	39
29	Subunit Structure of Benzylsuccinate Synthase. Biochemistry, 2009, 48, 1284-1292.	1.2	31
30	Toluene and Ethylbenzene Aliphatic Câ^'H Bond Oxidations Initiated by a Dicopper(II)-μ-1,2-Peroxo Complex. Journal of the American Chemical Society, 2009, 131, 3230-3245.	6.6	149
31	Reactivity Study of a Hydroperoxodicopper(II) Complex:  Hydroxylation, Dehydrogenation, and Ligand Cross-Link Reactions. Inorganic Chemistry, 2006, 45, 7160-7172.	1.9	33
32	Targeted Guanine Oxidation by a Dinuclear Copper(II) Complex at Single Stranded/Double Stranded DNA Junctions. Inorganic Chemistry, 2006, 45, 7144-7159.	1.9	70
33	Mechanism of Benzylsuccinate Synthase Probed by Substrate and Isotope Exchange. Journal of the American Chemical Society, 2006, 128, 16056-16057.	6.6	34
34	Deuterium Isotope Effects in the Unusual Addition of Toluene to Fumarate Catalyzed by Benzylsuccinate Synthaseâ€. Biochemistry, 2006, 45, 13932-13938.	1.2	28
35	Exogenous Nitrile Substrate Hydroxylation by a New Dicopper-Hydroperoxide Complex. Journal of the American Chemical Society, 2005, 127, 15360-15361.	6.6	46
36	Changing Selectivity of DNA Oxidation from Deoxyribose to Guanine by Ligand Design and a New Binuclear Copper Complex. Journal of the American Chemical Society, 2005, 127, 520-521.	6.6	93

	111
LE	

#	Article	IF	CITATIONS
37	Optical limiting property of molybdenum complex of fullerene C70. Optics Communications, 2000, 184, 309-313.	1.0	18
38	Redox behavior of the molybdenum and tungsten metallafullerenes M(η2-C60)(CO)2(phen)(dbm) (phenâ€=â€1,10-phenanthroline; dbmâ€=â€dibutyl maleate): (spectro)electrochemistry and theoretical considerations. Journal of the Chemical Society Dalton Transactions, 1999, , 965-970.	1.1	33