Xiaoping Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/967672/publications.pdf

Version: 2024-02-01

24 papers 1,294 citations

16 h-index 23 g-index

24 all docs

24 docs citations

times ranked

24

1951 citing authors

#	Article	IF	CITATIONS
1	Stretchable triboelectric nanogenerator with exteroception-visualized multifunctionality. Journal of Materials Chemistry A, 2022, 10, 4300-4305.	5.2	13
2	Stretchable Photonic Semicrystal Interface by Pressureâ€Assistant Selfâ€Assembly. Advanced Materials Interfaces, 2022, 9, .	1.9	O
3	A flexible hydrogel tactile sensor with low compressive modulus and dynamic piezoresistive response regulated by lignocellulose/graphene aerogels. Journal of Materials Chemistry C, 2021, 9, 12895-12903.	2.7	11
4	Multifunctional Ternary Hybrid Hydrogel Sensor Prepared <i>via</i> the Synergistic Stabilization Effect. ACS Applied Materials & Samp; Interfaces, 2021, 13, 57725-57734.	4.0	19
5	Fabrication of a Robust and Flame-Retardant Alooh-Lignocellulose Composite with a Lotus-Leaf-Like Superhydrophobic Coating. Journal of Wood Chemistry and Technology, 2020, 40, 44-57.	0.9	14
6	Candle soot nanoparticle-decorated wood for efficient solar vapor generation. Sustainable Energy and Fuels, 2020, 4, 354-361.	2.5	30
7	Improved dielectricity of anisotropic wood slices and bioinspired micropatterned film electrodes for highly sensitive flexible electronic sensors. Journal of Materials Chemistry C, 2020, 8, 16113-16120.	2.7	15
8	Synthesis of Pt-Loaded NiFe-LDH Nanosheets on Wood Veneer for Efficient Gaseous Formaldehyde Degradation. ACS Applied Materials & Samp; Interfaces, 2020, 12, 37147-37154.	4.0	24
9	Anisotropic, Flexible Wood Hydrogels and Wrinkled, Electrodeposited Film Electrodes for Highly Sensitive, Wide-Range Pressure Sensing. ACS Applied Materials & Samp; Interfaces, 2020, 12, 43024-43031.	4.0	59
10	Muscle-inspired capacitive tactile sensors with superior sensitivity in an ultra-wide stress range. Journal of Materials Chemistry C, 2020, 8, 5913-5922.	2.7	23
11	Double-Network Hierarchical-Porous Piezoresistive Nanocomposite Hydrogel Sensors Based on Compressive Cellulosic Hydrogels Deposited with Silver Nanoparticles. ACS Sustainable Chemistry and Engineering, 2020, 8, 7480-7488.	3.2	48
12	A wood–polypyrrole composite as a photothermal conversion device for solar evaporation enhancement. Journal of Materials Chemistry A, 2019, 7, 20706-20712.	5.2	189
13	Preparation and characterization of high-strength and water resistant lignocelluloses based composites bonded by branched polyethylenimine (PEI). International Journal of Biological Macromolecules, 2019, 141, 369-377.	3.6	16
14	Fabrication of Fe3O4-modified lignocellulose composite for microwave absorption via a sol–gel-assisted hot-pressing process. Cellulose, 2019, 26, 5455-5466.	2.4	12
15	Enhanced heavy metal adsorption ability of lignocellulosic hydrogel adsorbents by the structural support effect of lignin. Cellulose, 2019, 26, 4005-4019.	2.4	27
16	Ultrafine Mn ferrite by anchoring in a cellulose framework for efficient toxic ions capture and fast water/oil separation. Carbohydrate Polymers, 2018, 196, 117-125.	5.1	19
17	Facile Fabrication of a PDMS@Stearic Acid-Kaolin Coating on Lignocellulose Composites with Superhydrophobicity and Flame Retardancy. Materials, 2018, 11, 727.	1.3	16
18	Lignocellulose-Chitosan-Multiwalled Carbon Nanotube Composites with Improved Mechanical Strength, Dimensional Stability and Fire Retardancy. Polymers, 2018, 10, 341.	2.0	10

#	Article	IF	CITATION
19	Fabrication of Superhydrophobic Mg/Al Layered Double Hydroxide (LDH) Coatings on Medium Density Fiberboards (MDFs) with Flame Retardancy. Materials, 2018, 11, 1113.	1.3	19
20	Fabrication of a Nano-ZnO/Polyethylene/Wood-Fiber Composite with Enhanced Microwave Absorption and Photocatalytic Activity via a Facile Hot-Press Method. Materials, 2017, 10, 1267.	1.3	18
21	Preparation and comparison of bulk and membrane hydrogels based on Kraft- and ionic-liquid-isolated lignins. Green Chemistry, 2016, 18, 5607-5620.	4.6	56
22	Comparison of Hydrogels Prepared with Ionic-Liquid-Isolated vs Commercial Chitin and Cellulose. ACS Sustainable Chemistry and Engineering, 2016, 4, 471-480.	3.2	100
23	Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chemistry, 2016, 18, 53-75.	4.6	522
24	Solid biopolymer electrolytes based on all-cellulose composites prepared by partially dissolving cellulosic fibers in the ionic liquid 1-butyl-3-methylimidazolium chloride. Journal of Materials Science, 2012, 47, 5978-5986.	1.7	34