
## Arndt Schilling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/967622/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                 | lF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Hypoxia Preconditioned Serum (HPS)-Hydrogel Can Accelerate Dermal Wound Healing in Mice—An In<br>Vivo Pilot Study. Biomedicines, 2022, 10, 176.                                                         | 3.2  | 5         |
| 2  | Hypoxia Preconditioned Serum (HPS) Promotes Osteoblast Proliferation, Migration and Matrix<br>Deposition. Biomedicines, 2022, 10, 1631.                                                                 | 3.2  | 4         |
| 3  | Investigating the Microchannel Architectures Inside the Subchondral Bone in Relation to Estimated<br>Hip Reaction Forces on the Human Femoral Head. Calcified Tissue International, 2021, 109, 510-524. | 3.1  | 5         |
| 4  | Hangboard training in advanced climbers: A randomized controlled trial. Scientific Reports, 2021, 11, 13530.                                                                                            | 3.3  | 6         |
| 5  | Artificial Perception and Semiautonomous Control in Myoelectric Hand Prostheses Increases<br>Performance and Decreases Effort. IEEE Transactions on Robotics, 2021, 37, 1298-1312.                      | 10.3 | 21        |
| 6  | On the Utility of Bioimpedance in the Context of Myoelectric Control. IEEE Sensors Journal, 2021, 21, 19505-19515.                                                                                      | 4.7  | 1         |
| 7  | Estimation of knee and ankle angles during walking using thigh and shank angles. Bioinspiration and Biomimetics, 2021, 16, .                                                                            | 2.9  | 4         |
| 8  | The Interaction between microRNAs and the Wnt/β-Catenin Signaling Pathway in Osteoarthritis.<br>International Journal of Molecular Sciences, 2021, 22, 9887.                                            | 4.1  | 18        |
| 9  | Comparison of Grip Strength in Recreational Climbers and Non-Climbing Athletes—A Cross-Sectional<br>Study. International Journal of Environmental Research and Public Health, 2021, 18, 129.            | 2.6  | 10        |
| 10 | Sympathectomy aggravates subchondral bone changes during osteoarthritis progression in mice without affecting cartilage degeneration or synovial inflammation. Osteoarthritis and Cartilage, 2021, , .  | 1.3  | 9         |
| 11 | β2-Adrenoceptor Deficiency Results in Increased Calcified Cartilage Thickness and Subchondral Bone<br>Remodeling in Murine Experimental Osteoarthritis. Frontiers in Immunology, 2021, 12, 801505.      | 4.8  | 7         |
| 12 | Extracellular Vesicles Allow Epigenetic Mechanotransduction between Chondrocytes and Osteoblasts. International Journal of Molecular Sciences, 2021, 22, 13282.                                         | 4.1  | 10        |
| 13 | Impact of Shared Control Modalities on Performance and Usability of Semi-autonomous Prostheses.<br>Frontiers in Neurorobotics, 2021, 15, 768619.                                                        | 2.8  | 4         |
| 14 | The Selective Androgen Receptor Modulator Ostarine Improves Bone Healing in Ovariectomized Rats.<br>Calcified Tissue International, 2020, 106, 147-157.                                                 | 3.1  | 14        |
| 15 | Sensory neuropeptides are required for bone and cartilage homeostasis in a murine destabilization-induced osteoarthritis model. Bone, 2020, 133, 115181.                                                | 2.9  | 30        |
| 16 | Closed-Loop Multi-Amplitude Control for Robust and Dexterous Performance of Myoelectric<br>Prosthesis. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 498-507.           | 4.9  | 12        |
| 17 | Effect of Hypoxia Preconditioned Secretomes on Lymphangiogenic and Angiogenic Sprouting: An in<br>Vitro Analysis. Biomedicines, 2020, 8, 365.                                                           | 3.2  | 11        |
| 18 | Continuous Prediction of Joint Angular Positions and Moments: A Potential Control Strategy for<br>Active Knee-Ankle Prostheses, IEEE Transactions on Medical Robotics and Bionics, 2020, 2, 347-355     | 3.2  | 6         |

ARNDT SCHILLING

| #  | Article                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Laser Ablated Periodic Nanostructures on Titanium and Steel Implants Influence Adhesion and Osteogenic Differentiation of Mesenchymal Stem Cells. Materials, 2020, 13, 3526.                           | 2.9  | 14        |
| 20 | Inadequate tissue mineralization promotes cancer cell attachment. PLoS ONE, 2020, 15, e0237116.                                                                                                        | 2.5  | 2         |
| 21 | Use of Oral Anticoagulation and Diabetes Do Not Inhibit the Angiogenic Potential of Hypoxia<br>Preconditioned Blood-Derived Secretomes. Biomedicines, 2020, 8, 283.                                    | 3.2  | 9         |
| 22 | Comparative Evaluation of the Angiogenic Potential of Hypoxia Preconditioned Blood-Derived Secretomes and Platelet-Rich Plasma: An In Vitro Analysis. Biomedicines, 2020, 8, 16.                       | 3.2  | 11        |
| 23 | Osteoidosis leads to altered differentiation and function of osteoclasts. Journal of Cellular and<br>Molecular Medicine, 2020, 24, 5665-5674.                                                          | 3.6  | 7         |
| 24 | Estimation of Knee Angles Based on Thigh Motion: A Functional Approach and Implications for<br>High-Level Controlling of Active Prosthetic Knees. IEEE Control Systems, 2020, 40, 49-61.               | 0.8  | 14        |
| 25 | In Vitro Characterization of Hypoxia Preconditioned Serum (HPS)—Fibrin Hydrogels: Basis for an<br>Injectable Biomimetic Tissue Regeneration Therapy. Journal of Functional Biomaterials, 2019, 10, 22. | 4.4  | 10        |
| 26 | Determinants for success in climbing: A systematic review. Journal of Exercise Science and Fitness, 2019, 17, 91-100.                                                                                  | 2.2  | 69        |
| 27 | Developmental Transformation and Reduction of Connective Cavities within the Subchondral Bone.<br>International Journal of Molecular Sciences, 2019, 20, 770.                                          | 4.1  | 11        |
| 28 | Current State of Bone Adhesives—Necessities and Hurdles. Materials, 2019, 12, 3975.                                                                                                                    | 2.9  | 36        |
| 29 | Single Molecule Force Spectroscopy Reveals Two-Domain Binding Mode of Pilus-1 Tip Protein RrgA of<br><i>Streptococcus pneumoniae</i> to Fibronectin. ACS Nano, 2018, 12, 549-558.                      | 14.6 | 25        |
| 30 | Occlusive dressing-induced secretomes influence the migration and proliferation of mesenchymal stem cells and fibroblasts differently. European Journal of Medical Research, 2018, 23, 60.             | 2.2  | 7         |
| 31 | A Conceptual High Level Controller to Walk with Active Foot Prostheses/Orthoses. , 2018, , .                                                                                                           |      | 4         |
| 32 | Current Methods for Skeletal Muscle Tissue Repair and Regeneration. BioMed Research International, 2018, 2018, 1-11.                                                                                   | 1.9  | 92        |
| 33 | Intestinal Inflammation and Tumor Burden as Determinants for Bone Fragility in APC-Driven Tumorigenesis. Inflammatory Bowel Diseases, 2018, 24, 2386-2393.                                             | 1.9  | 4         |
| 34 | Effects of RANKL Knockdown by Virus-like Particle-Mediated RNAi in a Rat Model of Osteoporosis.<br>Molecular Therapy - Nucleic Acids, 2018, 12, 443-452.                                               | 5.1  | 9         |
| 35 | Evaluation of polycaprolactone â^' poly-D,L-lactide copolymer as biomaterial for breast tissue<br>engineering. Polymer International, 2017, 66, 77-84.                                                 | 3.1  | 17        |
| 36 | Perfusion Controlled Mobilization after Lower Extremity Free Flaps—Pushing the Limits of Time and<br>Intensity. Journal of Reconstructive Microsurgery, 2017, 33, 179-185.                             | 1.8  | 8         |

ARNDT SCHILLING

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Bioprinting Cartilage Tissue from Mesenchymal Stem Cells and PEG Hydrogel. Methods in Molecular<br>Biology, 2017, 1612, 391-398.                                                                                         | 0.9  | 43        |
| 38 | Nano-formulated curcumin accelerates acute wound healing through Dkk-1-mediated fibroblast mobilization and MCP-1-mediated anti-inflammation. NPG Asia Materials, 2017, 9, e368-e368.                                    | 7.9  | 111       |
| 39 | Ultrasound-assisted liposuction provides a source for functional adipose-derived stromal cells.<br>Cytotherapy, 2017, 19, 1491-1500.                                                                                     | 0.7  | 33        |
| 40 | High Efficiency Low Cost Fibroblast Nucleofection for GMP Compatible Cell-based Gene Therapy.<br>International Journal of Medical Sciences, 2017, 14, 798-803.                                                           | 2.5  | 8         |
| 41 | Biodegradable poly (lactic acid-co-glycolic acid) scaffolds as carriers for genetically-modified fibroblasts. PLoS ONE, 2017, 12, e0174860.                                                                              | 2.5  | 9         |
| 42 | Ultrasound-Assisted Liposuction Does Not Compromise the Regenerative Potential of Adipose-Derived<br>Stem Cells. Stem Cells Translational Medicine, 2016, 5, 248-257.                                                    | 3.3  | 40        |
| 43 | Polylactides in additive biomanufacturing. Advanced Drug Delivery Reviews, 2016, 107, 228-246.                                                                                                                           | 13.7 | 63        |
| 44 | Suction assisted liposuction does not impair the regenerative potential of adipose derived stem cells.<br>Journal of Translational Medicine, 2016, 14, 126.                                                              | 4.4  | 32        |
| 45 | Open Source 3D-Printing Approach for Economic and Fast Engineering of Perfusable Vessel-Like<br>Channels Within Cell-Laden Hydrogels. 3D Printing and Additive Manufacturing, 2016, 3, 22-31.                            | 2.9  | 9         |
| 46 | Hydrogels for Engineering of Perfusable Vascular Networks. International Journal of Molecular<br>Sciences, 2015, 16, 15997-16016.                                                                                        | 4.1  | 204       |
| 47 | The Fibrin Matrix Regulates Angiogenic Responses within the Hemostatic Microenvironment through<br>Biochemical Control. PLoS ONE, 2015, 10, e0135618.                                                                    | 2.5  | 43        |
| 48 | The role of calcitonin receptor signalling in polyethylene particle-induced osteolysis. Acta<br>Biomaterialia, 2015, 14, 125-132.                                                                                        | 8.3  | 10        |
| 49 | Free conjoined or chimeric medial sural artery perforator flap for the reconstruction of multiple defects in hand. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2015, 68, 565-570.                          | 1.0  | 20        |
| 50 | Free Lateral Great Toe Flap for the Reconstruction of Finger Pulp Defects. Journal of Reconstructive Microsurgery, 2015, 31, 277-282.                                                                                    | 1.8  | 17        |
| 51 | Dorsal plane-shaped advancement flap for the reconstruction of web space in syndactyly without skin<br>grafting: A preliminary report. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2015, 68,<br>e167-e173. | 1.0  | 9         |
| 52 | Improved properties of bone and cartilage tissue from 3D inkjet-bioprinted human mesenchymal stem cells by simultaneous deposition and photocrosslinking in PEG-GelMA. Biotechnology Letters, 2015, 37, 2349-2355.       | 2.2  | 278       |
| 53 | Effects of extracellular magnesium extract on the proliferation and differentiation of human osteoblasts and osteoclasts in coculture. Acta Biomaterialia, 2015, 27, 294-304.                                            | 8.3  | 158       |
| 54 | Regeneration through autologous hypoxia preconditioned plasma. Organogenesis, 2014, 10, 164-169.                                                                                                                         | 1.2  | 20        |

ARNDT SCHILLING

| #  | Article                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Effects of extracellular magnesium on the differentiation and function of human osteoclasts. Acta<br>Biomaterialia, 2014, 10, 2843-2854.                             | 8.3  | 96        |
| 56 | Modified Technique for One-Stage Treatment of Proximal Phalangeal Enchondromas With Pathologic<br>Fractures. Journal of Hand Surgery, 2014, 39, 1757-1760.           | 1.6  | 10        |
| 57 | Hypoxia-based strategies for angiogenic induction. Organogenesis, 2013, 9, 261-272.                                                                                  | 1.2  | 58        |
| 58 | Bone fragility and decline in stem cells in prematurely aging DNA repair deficient trichothiodystrophy<br>mice. Age, 2012, 34, 845-861.                              | 3.0  | 20        |
| 59 | Divergent Resorbability and Effects on Osteoclast Formation of Commonly Used Bone Substitutes in a<br>Human In Vitro-Assay. PLoS ONE, 2012, 7, e46757.               | 2.5  | 25        |
| 60 | Cell-based resorption assays for bone graft substitutes. Acta Biomaterialia, 2012, 8, 13-19.                                                                         | 8.3  | 45        |
| 61 | Bioresorption and Degradation of Biomaterials. Advances in Biochemical Engineering/Biotechnology, 2011, 126, 317-333.                                                | 1.1  | 11        |
| 62 | Osteoclastic Bioresorption of Biomaterials: Two- and Three-Dimensional Imaging and Quantification.<br>International Journal of Artificial Organs, 2010, 33, 198-203. | 1.4  | 12        |
| 63 | The Clock Genes Period 2 and Cryptochrome 2 Differentially Balance Bone Formation. PLoS ONE, 2010, 5, e11527.                                                        | 2.5  | 94        |
| 64 | Osteoclastic bioresorption of biomaterials: two- and three-dimensional imaging and quantification.<br>International Journal of Artificial Organs, 2010, 33, 198-203. | 1.4  | 5         |
| 65 | Osteoclasts and Biomaterials. European Journal of Trauma and Emergency Surgery, 2006, 32, 107-113.                                                                   | 0.3  | 38        |
| 66 | Resorbability of bone substitute biomaterials by human osteoclasts. Biomaterials, 2004, 25, 3963-3972.                                                               | 11.4 | 145       |