
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9675443/publications.pdf Version: 2024-02-01

RONALD HOFFMAN

#	Article	IF	CITATIONS
1	Philadelphia chromosome-negative classical myeloproliferative neoplasms: revised management recommendations from European LeukemiaNet. Leukemia, 2018, 32, 1057-1069.	3.3	415
2	Pacritinib vs Best Available Therapy, Including Ruxolitinib, in Patients With Myelofibrosis. JAMA Oncology, 2018, 4, 652.	3.4	261
3	Somatic mutations and cell identity linked by Genotyping of Transcriptomes. Nature, 2019, 571, 355-360.	13.7	206
4	MPD-RC 101 prospective study of reduced-intensity allogeneic hematopoietic stem cell transplantation in patients with myelofibrosis. Blood, 2014, 124, 1183-1191.	0.6	135
5	Pegylated interferon alfa-2a for polycythemia vera or essential thrombocythemia resistant or intolerant to hydroxyurea. Blood, 2019, 134, 1498-1509.	0.6	123
6	Bone marrow fibrosis in myelofibrosis: pathogenesis, prognosis and targeted strategies. Haematologica, 2016, 101, 660-671.	1.7	120
7	Dysregulated iron metabolism in polycythemia vera: etiology and consequences. Leukemia, 2018, 32, 2105-2116.	3.3	84
8	Polycythemia Vera: An Appraisal of the Biology and Management 10 Years After the Discovery of <i>JAK2 V617F</i> . Journal of Clinical Oncology, 2015, 33, 3953-3960.	0.8	69
9	Activation of p53 by the MDM2 inhibitor RG7112 impairs thrombopoiesis. Experimental Hematology, 2014, 42, 137-145.e5.	0.2	68
10	Oral idasanutlin in patients with polycythemia vera. Blood, 2019, 134, 525-533.	0.6	67
11	Immune Checkpoint Blockade Enhances Shared Neoantigen-Induced T-cell Immunity Directed against Mutated Calreticulin in Myeloproliferative Neoplasms. Cancer Discovery, 2019, 9, 1192-1207.	7.7	65
12	Randomized, Single-Blind, Multicenter Phase II Study of Two Doses of Imetelstat in Relapsed or Refractory Myelofibrosis. Journal of Clinical Oncology, 2021, 39, 2881-2892.	0.8	59
13	The orally bioavailable MDM2 antagonist RG7112 and pegylated interferon α 2a target JAK2V617F-positive progenitor and stem cells. Blood, 2014, 124, 771-779.	0.6	58
14	Lipocalin produced by myelofibrosis cells affects the fate of both hematopoietic and marrow microenvironmental cells. Blood, 2015, 126, 972-982.	0.6	58
15	Mitochondrial Role in Stemness and Differentiation of Hematopoietic Stem Cells. Stem Cells International, 2019, 2019, 1-10.	1.2	56
16	Combination treatment in vitro with Nutlin, a small-molecule antagonist of MDM2, and pegylated interferon-α 2a specifically targets JAK2V617F-positive polycythemia vera cells. Blood, 2012, 120, 3098-3105.	0.6	55
17	Persistent leukocytosis in polycythemia vera is associated with disease evolution but not thrombosis. Blood, 2020, 135, 1696-1703.	0.6	54
18	Safety and efficacy of combined ruxolitinib and decitabine in accelerated and blast-phase myeloproliferative neoplasms. Blood Advances, 2018, 2, 3572-3580.	2.5	51

#	Article	IF	CITATIONS
19	Ruxolitinib Therapy Followed by Reduced-Intensity Conditioning for Hematopoietic Cell Transplantation for Myelofibrosis: Myeloproliferative Disorders Research Consortium 114 Study. Biology of Blood and Marrow Transplantation, 2019, 25, 256-264.	2.0	47
20	Phase 2 study of ruxolitinib and decitabine in patients with myeloproliferative neoplasm in accelerated and blast phase. Blood Advances, 2020, 4, 5246-5256.	2.5	45
21	Imetelstat, a telomerase inhibitor, is capable of depleting myelofibrosis stem and progenitor cells. Blood Advances, 2018, 2, 2378-2388.	2.5	39
22	Results of the Myeloproliferative Neoplasms - Research Consortium (MPN-RC) 112 Randomized Trial of Pegylated Interferon Alfa-2a (PEG) Versus Hydroxyurea (HU) Therapy for the Treatment of High Risk Polycythemia Vera (PV) and High Risk Essential Thrombocythemia (ET). Blood, 2018, 132, 577-577.	0.6	39
23	A Phase I Study of the Proteasome Inhibitor Bortezomib in Patients with Myelofibrosis Blood, 2007, 110, 3540-3540.	0.6	39
24	Preclinical rationale for TGF-β inhibition as a therapeutic target for the treatment of myelofibrosis. Experimental Hematology, 2016, 44, 1138-1155.e4.	0.2	38
25	<i>Ex vivo</i> HSC expansion challenges the paradigm of unidirectional human hematopoiesis. Annals of the New York Academy of Sciences, 2020, 1466, 39-50.	1.8	38
26	Biology and Treatment of Primary Myelofibrosis. Hematology American Society of Hematology Education Program, 2007, 2007, 346-354.	0.9	37
27	A phase II study of panobinostat in patients with primary myelofibrosis (PMF) and post-polycythemia vera/essential thrombocythemia myelofibrosis (post-PV/ET MF). Leukemia Research, 2017, 53, 13-19.	0.4	35
28	Coexistence of Myeloproliferative Neoplasm and Plasma-Cell Dyscrasia. Clinical Lymphoma, Myeloma and Leukemia, 2014, 14, 31-36.	0.2	34
29	Expansion and preservation of the functional activity of adult hematopoietic stem cells cultured ex vivo with a histone deacetylase inhibitor. Stem Cells Translational Medicine, 2020, 9, 531-542.	1.6	34
30	lmetelstat Is Effective Treatment for Patients with Intermediate-2 or High-Risk Myelofibrosis Who Have Relapsed on or Are Refractory to Janus Kinase Inhibitor Therapy: Results of a Phase 2 Randomized Study of Two Dose Levels. Blood, 2018, 132, 685-685.	0.6	33
31	Interim Analysis of the Myeloproliferative Disorders Research Consortium (MPD-RC) 112 Global Phase III Trial of Front Line Pegylated Interferon Alpha-2a Vs. Hydroxyurea in High Risk Polycythemia Vera and Essential Thrombocythemia. Blood, 2016, 128, 479-479.	0.6	32
32	Phase I dose escalation study of lestaurtinib in patients with myelofibrosis. Leukemia and Lymphoma, 2015, 56, 2543-2551.	0.6	29
33	LKB1/ <i>STK11</i> Is a Tumor Suppressor in the Progression of Myeloproliferative Neoplasms. Cancer Discovery, 2021, 11, 1398-1410.	7.7	29
34	A Phase I Study of XL019, a Selective JAK2 Inhibitor, in Patients with Primary Myelofibrosis, Post-Polycythemia Vera, or Post-Essential Thrombocythemia Myelofibrosis. Blood, 2008, 112, 98-98.	0.6	29
35	Results of the Persist-2 Phase 3 Study of Pacritinib (PAC) Versus Best Available Therapy (BAT), Including Ruxolitinib (RUX), in Patients (pts) with Myelofibrosis (MF) and Platelet Counts <100,000/Aµl. Blood, 2016, 128, LBA-5-LBA-5.	0.6	29
36	JAK2 inhibitors do not affect stem cells present in the spleens of patients with myelofibrosis. Blood, 2014, 124, 2987-2995.	0.6	28

3

#	Article	IF	CITATIONS
37	A phase I, open-label, multi-center study of the JAK2 inhibitor AZD1480 in patients with myelofibrosis. Leukemia Research, 2015, 39, 157-163.	0.4	28
38	PRM-151 in Myelofibrosis: Durable Efficacy and Safety at 72 Weeks. Blood, 2015, 126, 56-56.	0.6	28
39	Optimal therapy for polycythemia vera and essential thrombocythemia can only be determined by the completion of randomized clinical trials. Haematologica, 2014, 99, 945-949.	1.7	24
40	Association of 5qâ^ and refractory anemia. American Journal of Hematology, 1978, 4, 269-272.	2.0	22
41	A thrombopoietin receptor antagonist is capable of depleting myelofibrosis hematopoietic stem and progenitor cells. Blood, 2016, 127, 3398-3409.	0.6	22
42	An Open-Label Study of CEP-701 in Patients with JAK2 V617F-Positive PV and ET: Update of 39 Enrolled Patients Blood, 2009, 114, 753-753.	0.6	22
43	Transient expansion of TP53 mutated clones in polycythemia vera patients treated with idasanutlin. Blood Advances, 2020, 4, 5735-5744.	2.5	21
44	Preliminary Report of MANIFEST, a Phase 2 Study of CPI-0610, a Bromodomain and Extraterminal Domain Inhibitor (BETi), in Combination with Ruxolitinib, in JAK Inhibitor (JAKi) Treatment NaÃ⁻ve Myelofibrosis Patients. Blood, 2019, 134, 4164-4164.	0.6	21
45	Treatment with Imetelstat Improves Myelofibrosis-Related Symptoms and Other Patient-Reported Outcomes in Patients with Relapsed or Refractory Higher-Risk Myelofibrosis. Blood, 2020, 136, 45-46.	0.6	21
46	Outcome of Allogeneic Hematopoietic Stem Cell Transplantation for Patients with Chronic and Advanced Phase Myelofibrosis. Biology of Blood and Marrow Transplantation, 2016, 22, 2180-2186.	2.0	20
47	Ex vivo expansion of hematopoietic stem cells: Finally transitioning from the lab to the clinic. Blood Reviews, 2021, 50, 100853.	2.8	20
48	A Multicenter, Open Label Phase I/II Study of CEP701 (Lestaurtinib) in Adults with Myelofibrosis; a Report On Phase I: A Study of the Myeloproliferative Disorders Research Consortium (MPD-RC) Blood, 2009, 114, 754-754.	0.6	19
49	Risk factors for infections and secondary malignancies in patients with a myeloproliferative neoplasm treated with ruxolitinib: a dual-center, propensity score-matched analysis. Leukemia and Lymphoma, 2020, 61, 660-667.	0.6	18
50	Overview of Myeloproliferative Neoplasms. Hematology/Oncology Clinics of North America, 2021, 35, 159-176.	0.9	18
51	Phase II trial of Lestaurtinib, a JAK2 inhibitor, in patients with myelofibrosis. Leukemia and Lymphoma, 2019, 60, 1343-1345.	0.6	17
52	Ex Vivo Expansion of Hematopoietic Stem Cells from Human Umbilical Cord Blood-derived CD34 ⁺ Cells Using Valproic Acid. Journal of Visualized Experiments, 2019, , .	0.2	17
53	New insights into the causes of thrombotic events in patients with myeloproliferative neoplasms raise the possibility of novel therapeutic approaches. Haematologica, 2019, 104, 3-6.	1.7	17
54	Ex Vivo Expansion of Adult Hematopoietic Stem and Progenitor Cells with Valproic Acid. Methods in Molecular Biology, 2021, 2185, 267-280.	0.4	17

#	Article	IF	CITATIONS
55	A Phase I Study of LBH589, a Novel Histone Deacetylase Inhibitor in Patients with Primary Myelofibrosis (PMF) and Post-Polycythemia/Essential Thrombocythemia Myelofibrosis (Post-PV/ET MF) Blood, 2009, 114, 308-308.	0.6	17
56	The characteristics of vessel lining cells in normal spleens and their role in the pathobiology of myelofibrosis. Blood Advances, 2018, 2, 1130-1145.	2.5	16
57	Metabolic Effects of JAK1/2 Inhibition in Patients with Myeloproliferative Neoplasms. Scientific Reports, 2019, 9, 16609.	1.6	16
58	A Phase 3 Study of the Hepcidin Mimetic Rusfertide (PTG-300) in Patients with Polycythemia Vera. Blood, 2021, 138, 1504-1504.	0.6	16
59	Modern management of splenomegaly in patients with myelofibrosis. Annals of Hematology, 2020, 99, 1441-1451.	0.8	15
60	Symptom burden and quality of life in patients with high-risk essential thrombocythaemia and polycythaemia vera receiving hydroxyurea or pegylated interferon alfa-2a: a post-hoc analysis of the MPN-RC 111 and 112 trials. Lancet Haematology,the, 2022, 9, e38-e48.	2.2	15
61	Outcome Disparities in Caucasian andÂNon-Caucasian Patients With Myeloproliferative Neoplasms. Clinical Lymphoma, Myeloma and Leukemia, 2016, 16, 350-357.	0.2	14
62	Outcomes of splanchnic vein thrombosis in patients with myeloproliferative neoplasms in a single center experience. European Journal of Haematology, 2020, 104, 72-73.	1.1	14
63	Rusfertide (PTC-300) treatment in phlebotomy-dependent polycythemia vera patients Journal of Clinical Oncology, 2022, 40, 7003-7003.	0.8	14
64	Clinical Benefit Derived from Decitabine Therapy for Advanced Phases of Myeloproliferative Neoplasms. Acta Haematologica, 2021, 144, 48-57.	0.7	11
65	Rusfertide (PTG-300) Induction Therapy Rapidly Achieves Hematocrit Control in Polycythemia Vera Patients without the Need for Therapeutic Phlebotomy. Blood, 2021, 138, 390-390.	0.6	11
66	Continued Role of Splenectomy in the Management of Patients With Myelofibrosis. Clinical Lymphoma, Myeloma and Leukemia, 2016, 16, e133-e137.	0.2	10
67	<i>Alox5</i> Blockade Eradicates <i>JAK2V617F</i> -Induced Polycythemia Vera in Mice. Cancer Research, 2017, 77, 164-174.	0.4	10
68	A Phase 2 Study of Cpi-0610, a Bromodomain and Extraterminal (BET) Inhibitor, in Patients with Myelofibrosis (MF). Blood, 2018, 132, 5481-5481.	0.6	10
69	PTG-300 Eliminates the Need for Therapeutic Phlebotomy in Both Low and High-Risk Polycythemia Vera Patients. Blood, 2020, 136, 33-35.	0.6	10
70	Treatment of Myelofibrosis Patients with the TGF- $\hat{1}^2$ 1/3 Inhibitor AVID200 (MPN-RC 118) Induces a Profound Effect on Platelet Production. Blood, 2021, 138, 142-142.	0.6	10
71	Preâ€clinical development of a cryopreservable megakaryocytic cell product capable of sustained platelet production in mice. Transfusion, 2019, 59, 3698-3713.	0.8	9
72	Potential Disease-Modifying Activity of Imetelstat Demonstrated By Reduction in Cytogenetically Abnormal Clones and Mutation Burden Leads to Clinical Benefits in Relapsed/Refractory Myelofibrosis Patients. Blood, 2020, 136, 39-40.	0.6	9

#	Article	IF	CITATIONS
73	Shared and Tissue-Specific Expression Signatures between Bone Marrow from Primary Myelofibrosis and Essential Thrombocythemia. Experimental Hematology, 2019, 79, 16-25.e3.	0.2	8
74	Pleckstrin-2 is essential for erythropoiesis in β-thalassemic mice, reducing apoptosis and enhancing enucleation. Communications Biology, 2021, 4, 517.	2.0	8
75	Rationale for and Results of a Phase I Study of the TGF- $\hat{1}^2$ 1/3 Inhibitor AVID200 in Subjects with Myelofibrosis: MPN-RC 118 Trial. Blood, 2020, 136, 6-8.	0.6	8
76	Final Analysis of a Multicenter Pilot Phase 2 Study of Ruxolitinib and Danazol in Patients with Myelofibrosis. Blood, 2015, 126, 1618-1618.	0.6	8
77	Limited Mitochondrial Activity Coupled With Strong Expression of CD34, CD90 and EPCR Determines the Functional Fitness of ex vivo Expanded Human Hematopoietic Stem Cells. Frontiers in Cell and Developmental Biology, 2020, 8, 592348.	1.8	8
78	Genomic characterization of spleens in patients with myelofibrosis. Haematologica, 2018, 103, e446-e449.	1.7	7
79	The Implications of Liver Biopsy Results in Patients with Myeloproliferative Neoplasms Being Treated with Ruxolitinib. Case Reports in Hematology, 2019, 2019, 1-3.	0.3	7
80	The possible role of mutated endothelial cells in myeloproliferative neoplasms. Haematologica, 2021, 106, 2813-2823.	1.7	7
81	Use of pegylated interferon in young patients with polycythemia vera and essential thrombocythemia. Pediatric Blood and Cancer, 2021, 68, e28888.	0.8	7
82	The CXCR1/CXCR2 Inhibitor Reparixin Alters the Development of Myelofibrosis in the Gata1low Mice. Frontiers in Oncology, 2022, 12, 853484.	1.3	7
83	Evaluation of a clinical-grade, cryopreserved, ex vivo-expanded stem cell product from cryopreserved primary umbilical cord blood demonstrates multilineage hematopoietic engraftment in mouse xenografts. Cytotherapy, 2021, 23, 841-851.	0.3	6
84	Impact on MPN Symptoms and Quality of Life of Front Line Pegylated Interferon Alpha-2a Vs. Hydroxyurea in High Risk Polycythemia Vera and Essential Thrombocythemia: Results of Myeloproliferative Disorders Research Consortium (MPD-RC) 112 Global Phase III Trial. Blood, 2018, 132, 3032-3032.	0.6	6
85	A phase II study of cpi-0610, a bromodomain and extraterminal protein inhibitor (BETi) alone or with ruxolitinib (RUX), in patients with myelofibrosis (MF) Journal of Clinical Oncology, 2019, 37, 7056-7056.	0.8	6
86	p53 as a target in myeloproliferative neoplasms. Oncotarget, 2012, 3, 1052-1053.	0.8	6
87	Survey and evaluation of mutations in the human KLF1 transcription unit. Scientific Reports, 2018, 8, 6587.	1.6	5
88	Current approaches to challenging scenarios in myeloproliferative neoplasms. Expert Review of Anticancer Therapy, 2018, 18, 567-578.	1.1	5
89	Whirling Platelets Away for Transfusion. Cell, 2018, 174, 503-504.	13.5	5
90	Evaluation of Therapeutic Strategies to Reduce the Number of Thrombotic Events in Patients With Polycythemia Vera and Essential Thrombocythemia. Frontiers in Oncology, 2020, 10, 636675.	1.3	5

#	Article	IF	CITATIONS
91	Efficacy of Combined Ruxolitinib and Decitabine in Patients with Accelerated and Blast-Phase Myeloproliferative Neoplasms: Results of a Phase II Study (MPN-RC 109 trial). Blood, 2018, 132, 3027-3027.	0.6	5
92	Hepcidin Mimetic (PTG-300) Reverses Iron Deficiency While Controlling Hematocrit in Polycythemia Vera Patients. Blood, 2020, 136, 40-41.	0.6	5
93	Navtemadlin (KRT-232), a Small Molecule MDM2 Inhibitor, Is More Effective Than Decitabine Against Myeloproliferative Neoplasm-Blast Phase in a Patient-Derived Xenograft Model. Blood, 2021, 138, 3591-3591.	0.6	5
94	Myeloproliferative Neoplasm (MPN) Blastic Transformation Occurs at the Level of Hematopoietic Stem Cells. Blood, 2018, 132, 101-101.	0.6	4
95	Combination Treatment with Imetelstat, a Telomerase Inhibitor, and Ruxolitinib Depletes Myelofibrosis Hematopoietic Stem Cells and Progenitor Cells. Blood, 2019, 134, 2963-2963.	0.6	4
96	Preclinical Development of a Cord Blood (CB)-Derived Hematopoietic Stem Cell (HSC) Product for Allogeneic Transplantation in Patients with Hematological Malignancies. Blood, 2016, 128, 818-818.	0.6	4
97	Splenic Micro Environmental Cells from Patients with Myelofibrosis Elaborate a Cascade of Cytokines and Serve As a Niche for Malignant Hematopoiesis. Blood, 2016, 128, 953-953.	0.6	4
98	What are the molecular mechanisms driving the switch from MPNs to leukemia?. Best Practice and Research in Clinical Haematology, 2021, 34, 101254.	0.7	3
99	Ruxolitinib discontinuation in polycythemia vera: Patient characteristics, outcomes, and salvage strategies from a large multi-institutional database. Leukemia Research, 2021, 109, 106629.	0.4	3
100	Modeling Calreticulin-Mutant Myeloproliferative Neoplasms with Isogenic Induced Pluripotent Stem Cells. Blood, 2018, 132, 4319-4319.	0.6	3
101	Loss of LKB1/STK11 Facilitates Leukemic Progression of the Myeloproliferative Neoplasms. Blood, 2020, 136, 1-1.	0.6	3
102	Correction of the Abnormal Trafficking of Primary Myelofibrosis CD34+ Cells by Treatment with Chromatin Modifying Agents. Blood, 2008, 112, 101-101.	0.6	3
103	Digital Immune Expression Profiling Coupled with Immunohistochemistry for Interrogation of Microenvironment in Formalin Fixed Paraffin Embedded Specimens of Marrow and Spleen from PMF Patients. Blood, 2015, 126, 2832-2832.	0.6	3
104	The Exhaustion of Adult Hematopoietic Stem Cells in Ex Vivo Cultures Can Be Overcome by a Histone Deacetylase Inhibitor. Blood, 2017, 130, 655-655.	0.6	3
105	European Leukemianet (ELN) Response Predicts Disease Progression but Not Thrombosis or Death in Polycythemia Vera (PV): An Analysis of a Multicenter Database. Blood, 2021, 138, 240-240.	0.6	3
106	Development of an MDM2 Degrader for Treatment of Acute Leukemias. Blood, 2021, 138, 1866-1866.	0.6	3
107	Emerging drugs for the treatment of myelofibrosis: phase II & III clinical trials. Expert Opinion on Emerging Drugs, 2021, 26, 351-362.	1.0	3
108	Characterization of disease-propagating stem cells responsible for myeloproliferative neoplasm–blast phase. JCI Insight, 2022, 7, .	2.3	3

#	Article	IF	CITATIONS
109	Don't judge a JAK2 inhibitor by spleen response alone. Lancet Haematology,the, 2018, 5, e56-e57.	2.2	2
110	Recent advances in prognostication and treatment of polycythemia vera. Faculty Reviews, 2021, 10, 29.	1.7	2
111	Persistent Leukocytosis in Polycythemia Vera Is Associated with Disease Evolution but Not Thrombosis: An Analysis from a 520-Patient Retrospective Multi-Center Database. Blood, 2019, 134, 2949-2949.	0.6	2
112	Use of Pegylated Interferon in Six Pediatric Patients with Myeloproliferative Neoplasms. Blood, 2019, 134, 4194-4194.	0.6	2
113	A Novel Combination of Drugs Which Target Both the Intrinsic and Extrinsic Apoptotic Pathways to Eliminate Myelofibrosis CD34+ Cells. Blood, 2019, 134, 4201-4201.	0.6	2
114	Interim Analysis of a Phase II Pilot Trial of Ruxolitinib Combined with Danazol for Patients with Primary Myelofibrosis (MF), Post Essential Thrombocythemia-Myelofibrosis (Post ET), and Post Polycythemia Vera Myelofibrosis (PV MF) Suffering from Anemia. Blood, 2014, 124, 3206-3206.	0.6	2
115	Aberrant Responsiveness of Erythropoiesis to Iron Deficiency in Polycythemia Vera. Blood, 2019, 134, 429-429.	0.6	2
116	Clinical Trial Design Features of Myelofibrosis Trials during the Last Decade: Comprehensive Review of Clinicaltrials.Gov Data 2010-2019. Blood, 2020, 136, 37-37.	0.6	2
117	Novel treatments to tackle myelofibrosis. Expert Review of Hematology, 2018, 11, 889-902.	1.0	1
118	Potent In Vitro Peptide Antagonists of the Thrombopoietin Receptor as Potential Myelofibrosis Drugs. Advanced Therapeutics, 2021, 4, 2000241.	1.6	1
119	The Genetic Architecture of Myeloproliferative Neoplasms-Blast Phase (MPN-BP) Stem Cells. Blood, 2019, 134, 1677-1677.	0.6	1
120	Correlation Analyses of Imetelstat Exposure with Pharmacodynamic Effect, Efficacy and Safety in a Phase 2 Study in Patients with Higher-Risk Myelofibrosis Refractory to Janus Kinase Inhibitor Identified an Optimal Dosing Regimen for Phase 3 Study. Blood, 2020, 136, 33-34.	0.6	1
121	Mast Cells Are Involved by the Malignant Process and Play An Important Role in the Pruritogenesis in Patients with Myeloproliferative Disorders. Blood, 2008, 112, 3729-3729.	0.6	1
122	Treatment with Pegylated Interferon Alpha 2a in Combination with the Bcl-XI Inhibitor ABT-737 Specifically Targets JAK2V617F Positive Hematopoietic Progenitor Cells From Patients with Polycythemia Vera Blood, 2009, 114, 3916-3916.	0.6	1
123	Treatment in Vitro with a Combination of Bcl-XI Inhibitor-ABT-737 and a JAK2 Inhibitor Selectively Eliminates JAK2V617F MPN Progenitor Cells Blood, 2009, 114, 752-752.	0.6	1
124	Chromatin Modifying Agents Promote the Ex Vivo Production of Functional Human Erythroid Progenitor Cells. Blood, 2010, 116, 340-340.	0.6	1
125	Inversion of Chromosome 12 and Translocations of 12q13-q15 In Primary Myelofibrosis (PMF) Are Associated with Disease Progression and a Poor Prognosis. Blood, 2010, 116, 4110-4110.	0.6	1
126	Impact of Genomic Alterations on Outcomes in Myelofibrosis Patients Undergoing Allogeneic Hematopoietic Stem Cell Transplantation. Blood, 2016, 128, 2301-2301.	0.6	1

#	Article	IF	CITATIONS
127	Phase 2 trial of PRM-151, an antifibrotic agent, in patients with myelofibrosis: Stage 1 results Journal of Clinical Oncology, 2014, 32, 7114-7114.	0.8	1
128	Combined Drug Targeting of p53-dependent and -independent Pathways Depletes Myelofibrosis Hematopoietic Stem/Progenitor Cells. Leukemia, 2021, , .	3.3	1
129	High Throughput Droplet Single-Cell Genotyping of Transcriptomes (GoT) Reveals the Cell Identity Dependency of the Transcriptional Output of Somatic Mutations. Blood, 2018, 132, 541-541.	0.6	1
130	The New Science and Concepts That Underlie Current and Future Treatments for Myeloproliferative Neoplasms. Hematology/Oncology Clinics of North America, 2021, 35, xvii-xix.	0.9	0
131	Two Classes of Progenitor Cells in Patients with Myeloproliferative Disorders Are Capable of Generating JAK2V617F+CD31+CD144+ Endothelial Cells Blood, 2007, 110, 261-261.	0.6	Ο
132	The JAK2V617F Mutation Is Present in the Liver Endothelial Cells of Patients with Budd-Chiari Syndrome. Blood, 2008, 112, 2795-2795.	0.6	0
133	Primary Myelofibrosis Is Associated with Truncation of the Plasma Chemokine SDF-1. Blood, 2008, 112, 3731-3731.	0.6	0
134	The Relationship Between Chromosomally Abnormal Hematopoiesis and the JAK2V617F Allele Burden in Patients (pts) with Ph-Negative Chronic Myeloproliferative Disorders (Ph-neg MPD). Blood, 2008, 112, 3106-3106.	0.6	0
135	Bone Marrow CD34+ Cells Expanded On Human Brain Endothelial Cells Reconstitutes Lethally Irradiated Baboons in a Variable Manner Blood, 2009, 114, 3214-3214.	0.6	0
136	Effective Management of Patients with Leukemic Transformation of Myelofibrosis Blood, 2009, 114, 4967-4967.	0.6	0
137	Sequential Treatment of CD34+ Cells From Patients with Primary Myelofibrosis with Chromatin Modifying Agents Alters the Behavior of JAK2V617F Positive NOD/SCID Marrow Repopulating Cells Blood, 2009, 114, 1910-1910.	0.6	Ο
138	Ontogenic-Specific Increasesin HDAC1 Activity and Transcription Factor Association During the Maturation of Human Adult Erythroblasts in Vitro Blood, 2009, 114, 1978-1978.	0.6	0
139	Jumping Translocations of the Long Arms of Chromosome 1 (1qJT) in Myeloproliferative Neoplasms (MPNs) and Myelodysplastic Syndromes (MDS) Are Associated with High Risk of Transformation to Acute Myelogenous Leukemia (AML) Blood, 2009, 114, 1567-1567.	0.6	0
140	Recurrent Amplified Regions on the Long Arm of Chromosome 1 (1q) Are Associated with Disease Progression In Ph-Negative Myeloproliferative Neoplasms (MPN). Blood, 2010, 116, 3087-3087.	0.6	0
141	The A3669G Polymorphism of GR Is a Host Genetic Modifier Associated with Polycythemia Vera and Primary Myelofibrosis. Blood, 2010, 116, 3067-3067.	0.6	Ο
142	Targeting Non-Histone Protein Acetylation Impairs Platelet Production During Normal Megakaryocytopoiesis Blood, 2010, 116, 2610-2610.	0.6	0
143	Chromosomal and FISH Study of 286 Patients with Primary Myelofibrosis (PMF) Reveals Cryptic Abnormalities and Identifies Lesions Associated with Favorable Prognosis and Disease Progression,. Blood, 2011, 118, 3526-3526.	0.6	0
144	Outcome of Allogeneic Stem Cell Transplantation for Patients with Chronic Myelofibrosis and Blastic Transformation of Myelofibrosis. Blood, 2011, 118, 4534-4534.	0.6	0

#	Article	IF	CITATIONS
145	Prevalence Of The JAK2V617F Mutation and Associated Risk Haplotype and Determination Of Demographic and Lifestyle Risk Factors In The US Population, Nhanes 1999-2002. Blood, 2013, 122, 391-391.	0.6	0
146	The Effects of Lipocalin (LCN2) on Hematopoiesis in Primary Myelofibrosis. Blood, 2014, 124, 1878-1878.	0.6	0
147	An Inhibitor of TGF-β Promotes Proliferation of Normal but Not MPN Hematopoietic Cells and Is a Candidate Therapeutic Agent for the Treatment of MPN Patients Carrying JAK2 V617F or Calr pQ365fs Mutations. Blood, 2015, 126, 4089-4089.	0.6	0
148	The JAK2 V617F Mutation Disrupts the Regulatory Activity Exerted By Calreticulin on the Glucocorticoid Receptor in Erythroid Cells. Blood, 2015, 126, 5216-5216.	0.6	0
149	Characterization and Isolation of Splenic Littoral Cells, a Possible Cellular Niche for Extramedullary Hematopoiesis in Myelofibrosis. Blood, 2015, 126, 3594-3594.	0.6	0
150	The telomerase inhibitor imetelstat in patients (pts) with intermediate-2 or high-risk myelofibrosis (MF) previously treated with Janus kinase (JAK) inhibitor: A phase 2, randomized study Journal of Clinical Oncology, 2016, 34, TPS7079-TPS7079.	0.8	0
151	Transcriptional Characterization of Myelofibrotic Bone Marrow Microenvironment Reveals Distinct Tumor Microenvironment in JAK2+ and Calr+ PMF Marrows. Blood, 2016, 128, 1954-1954.	0.6	0
152	The Effect of JAK 1/2 Inhibitors on Outcomes of Allogeneic Stem Cell Transplantation for Patients with Myelofibrosis. Blood, 2018, 132, 5784-5784.	0.6	0
153	Enriched Populations of Human Megakaryocytic Cells Affect the Behavior of Myelofibrosis CD34+ Cells As Well As Cells Belonging to the MF Supportive Microenvironment. Blood, 2018, 132, 3057-3057.	0.6	0
154	Infusion of a Cryopreservable Human Megakaryocyte-Biased Cell Product Results in Sustained Platelet Reconstitution In Vivo. Blood, 2018, 132, 117-117.	0.6	0
155	Outcomes of Abdominal Thrombosis in Patients with Myeloproliferative Neoplasms in a Single Center Experience. Blood, 2018, 132, 4307-4307.	0.6	Ο
156	Identifying Cytokine Biomarkers of Response to Pegylated-Interferon Therapy in Polycythemia Vera and Essential Thrombocythemia: Correlative Analysis from the MPN-RC 111/112 Trials. Blood, 2019, 134, 1661-1661.	0.6	0
157	Rational therapeutic options for patients with myeloproliferative neoplasms. Transactions of the American Clinical and Climatological Association, 2011, 122, 11-26.	0.9	0
158	Single-Cell Multi-Omics Reveals That Pegylated Interferon-Alfa Treatment Differentially Redirects Mutated and Wildtype Hematopoietic Cell Differentiation Trajectories in CALR-mutated Essential Thrombocythemia (ET) Patients. Blood, 2021, 138, 57-57.	0.6	0
159	Analysis of the Clobal Methylation Profile of Accelerated and Blast Phase Myeloproliferative Neoplasms and Its Association with Response to Decitabine-Based Therapy. Blood, 2020, 136, 18-20.	0.6	0
160	Symptom Burden and Quality of Life in High-Risk Essential Thrombocythemia and Polycythemia Vera Patients Receiving Hydroxyurea or Pegylated Interferon Alfa-2a: Results of Myeloproliferative Neoplasms Research Consortium (MPN-RC) 111 and 112 Trials. Blood, 2020, 136, 19-21.	0.6	0