
Jing Zhan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9675373/publications.pdf Version: 2024-02-01

LINC 7HAN

#	Article	IF	CITATIONS
1	Engineering NH3-induced 1D self-assembly architecture with conductive polymer for advanced hybrid Na-CO2 batteries via morphology modulation. Journal of Power Sources, 2022, 520, 230909.	4.0	11
2	Morphology-control and template-free fabrication of bimetallic Cu–Ni alloy rods for ethanol electro-oxidation in alkaline media. Journal of Alloys and Compounds, 2021, 855, 157438.	2.8	22
3	Dense binary Fe–Cu sites promoting CO ₂ utilization enable highly reversible hybrid Na–CO ₂ batteries. Journal of Materials Chemistry A, 2021, 9, 22114-22128.	5.2	17
4	Thermodynamic simulation of metal behaviors in Cu2+-Ni2+-NH3-NH4+-C2O42–H2O system. Transactions of Nonferrous Metals Society of China, 2021, 31, 1475-1483.	1.7	5
5	Designing Co-based microwave absorber with high absorption and thin thickness based on structure regulations. Journal of Materials Science: Materials in Electronics, 2021, 32, 28648-28662.	1.1	5
6	Visible-light-induced NiCo2O4@Co3O4 core/shell heterojunction photocatalysts for efficient removal of organic dyes. Journal of Central South University, 2021, 28, 3040-3049.	1.2	9
7	Reversible hybrid sodium-CO2 batteries with low charging voltage and long-life. Nano Energy, 2020, 68, 104318.	8.2	70
8	Hierarchically porous carbon sheets/Co nanofibers derived from corncobs for enhanced microwave absorbing properties. Applied Surface Science, 2020, 534, 147510.	3.1	37
9	Preparation and electrochemical performance of nitrogen-doped carbon-coated Bi2Mn4O10 anode materials for lithium-ion batteries. Transactions of Nonferrous Metals Society of China, 2020, 30, 2188-2199.	1.7	11
10	Heterojunction photocatalyst for organic degradation: Superior photocatalytic activity through the phase and interface engineering. Ceramics International, 2020, 46, 23245-23256.	2.3	14
11	Boosting ethanol oxidation over nickel oxide through construction of quasi-one-dimensional morphology and hierarchically porous structure. Transactions of Nonferrous Metals Society of China, 2020, 30, 1615-1624.	1.7	8
12	Exploration and crystal phase engineering from bismuthinite ore to visible-light responsive photocatalyst of Bi2O3. Journal of Environmental Chemical Engineering, 2019, 7, 103375.	3.3	28
13	Porous Nickel Fibers with Enhanced Electrocatalytic Activities on Electro-oxidation of Ethanol in Alkaline Media. Jom, 2019, 71, 1485-1491.	0.9	3
14	Construction of a novel ZnCo2O4/Bi2O3 heterojunction photocatalyst with enhanced visible light photocatalytic activity. Chinese Chemical Letters, 2019, 30, 735-738.	4.8	47
15	Facile template-free fabrication of mesoporous ZnCo 2 O 4 fibers with enhanced photocatalytic activity under visible-light irradiation. Materials Letters, 2018, 220, 66-69.	1.3	24
16	Effects of composition on the microwave absorbing properties of Fe Ni100â^' (x = 0–25) submicro fibers. Advanced Powder Technology, 2018, 29, 1099-1105.	2.0	14
17	Synthesis of Bi2Mn4O10 nanoparticles and its anode properties for LIB. Ceramics International, 2018, 44, 14891-14895.	2.3	11
18	Preparation of Fe20Ni80 submicron fibers by an oxalate precipitation-thermal decomposition process and their microwave absorbing properties. Journal of Materials Science: Materials in Electronics, 2017, 28, 13548-13555.	1.1	11

JING ZHAN

#	Article	IF	CITATIONS
19	Synthesis of mesoporous NiCo2O4 fibers and their electrocatalytic activity on direct oxidation of ethanol in alkaline media. Electrochimica Acta, 2015, 154, 70-76.	2.6	75
20	Synthesis and microwave absorbing properties of quasione-dimensional mesoporous NiCo2O4 nanostructure. Journal of Alloys and Compounds, 2014, 585, 240-244.	2.8	95
21	Thermodynamics analysis of system and preparation of Ni microfiber. Transactions of Nonferrous Metals Society of China, 2013, 23, 3456-3461.	1.7	6
22	Template-free synthesis of Ni microfibres and their electromagnetic wave absorbing properties. Journal Physics D: Applied Physics, 2013, 46, 495308.	1.3	15
23	Shape-controlled synthesis of novel precursor for fibrous Ni-Co alloy powders. Transactions of Nonferrous Metals Society of China, 2011, 21, 544-551.	1.7	15
24	Thermodynamic analysis on synthesis of fibrous Ni-Co alloys precursor and Ni/Co ratio control. Transactions of Nonferrous Metals Society of China, 2011, 21, 1141-1148.	1.7	17
25	Composition and morphology of complicated copper oxalate powder. Transactions of Nonferrous Metals Society of China, 2010, 20, 165-170.	1.7	18
26	Thermodynamic equilibrium calculation on preparation of copper oxalate precursor powder. Transactions of Nonferrous Metals Society of China, 2008, 18, 454-458.	1.7	7