
Haolin Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/967430/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pubertal Bisphenol A exposure increases adult rat serum testosterone by resetting pituitary homeostasis. Environmental Pollution, 2022, 298, 118764.	3.7	5
2	ldentification of Rat Testicular Leydig Precursor Cells by Single-Cell-RNA-Sequence Analysis. Frontiers in Cell and Developmental Biology, 2022, 10, 805249.	1.8	10
3	Single-cell RNA sequencing of adult rat testes after Leydig cell elimination and restoration. Scientific Data, 2022, 9, 106.	2.4	5
4	Isolation of Leydig cells from adult rat testes by magneticâ€activated cell sorting protocol based on prolactin receptor expression. Andrology, 2022, 10, 1197-1207.	1.9	2
5	Phthalate inhibits Leydig cell differentiation and promotes adipocyte differentiation. Chemosphere, 2021, 262, 127855.	4.2	9
6	Effects of gestational exposure to perfluorooctane sulfonate on the lung development of offspring rats. Environmental Pollution, 2021, 272, 115535.	3.7	15
7	TSPO ligand FGINâ€1â€27 controls priapism in sickle cell mice via endogenous testosterone production. Journal of Cellular Physiology, 2021, 236, 3073-3082.	2.0	8
8	Perfluoroundecanoic acid inhibits Leydig cell development in pubertal male rats via inducing oxidative stress and autophagy. Toxicology and Applied Pharmacology, 2021, 415, 115440.	1.3	9
9	Differentiation of seminiferous tubule-associated stem cells into leydig cell and myoid cell lineages. Molecular and Cellular Endocrinology, 2021, 525, 111179.	1.6	16
10	TCF21+ mesenchymal cells contribute to testis somatic cell development, homeostasis, and regeneration in mice. Nature Communications, 2021, 12, 3876.	5.8	27
11	Sirt1 and Nrf2: regulation of Leydig cell oxidant/antioxidant intracellular environment and steroid formationâ€. Biology of Reproduction, 2021, 105, 1307-1316.	1.2	22
12	Effects of Midazolam on the Development of Adult Leydig Cells From Stem Cells In Vitro. Frontiers in Endocrinology, 2021, 12, 765251.	1.5	17
13	Effects of pharmacologically induced Leydig cell testosterone production on intratesticular testosterone and spermatogenesisâ€. Biology of Reproduction, 2020, 102, 489-498.	1.2	25
14	Stem Leydig Cells in the Adult Testis: Characterization, Regulation and Potential Applications. Endocrine Reviews, 2020, 41, 22-32.	8.9	56
15	Cholesterol accumulation, lipid droplet formation, and steroid production in Leydig cells: Role of translocator protein (18â€kDa). Andrology, 2020, 8, 719-730.	1.9	12
16	Characterization of stem cells associated with seminiferous tubule of adult rat testis for their potential to form Leydig cells. Stem Cell Research, 2019, 41, 101593.	0.3	10
17	Origin and regulation of stem Leydig cells in the adult testis. Current Opinion in Endocrine and Metabolic Research, 2019, 6, 49-53.	0.6	3
18	Characterization and differentiation of CD51+ Stem Leydig cells in adult mouse testes. Molecular and Cellular Endocrinology, 2019, 493, 110449.	1.6	12

#	Article	IF	CITATIONS
19	Effects of spermatogenic cycle on Stem Leydig cell proliferation and differentiation. Molecular and Cellular Endocrinology, 2019, 481, 35-43.	1.6	15
20	Acute effects of the translocator protein drug ligand FGIN-1-27 on serum testosterone and luteinizing hormone levels in male Sprague-Dawley ratsâ€. Biology of Reproduction, 2019, 100, 824-832.	1.2	7
21	Long-term maintenance of luteinizing hormone-responsive testosterone formation by primary rat Leydig cells in vitro. Molecular and Cellular Endocrinology, 2018, 476, 48-56.	1.6	14
22	Nasal delivery of nerve growth factor rescue hypogonadism by up-regulating GnRH and testosterone in aging male mice. EBioMedicine, 2018, 35, 295-306.	2.7	27
23	Leydig Cell Development and Aging in the Brown Norway Rat. , 2018, , 853-862.		2
24	Direct Reprogramming of Mouse Fibroblasts toward Leydig-like Cells by Defined Factors. Stem Cell Reports, 2017, 8, 39-53.	2.3	53
25	Steroidogenesis in Leydig cells: effects of aging and environmental factors. Reproduction, 2017, 154, R111-R122.	1.1	173
26	Leydig cell stem cells: Identification, proliferation and differentiation. Molecular and Cellular Endocrinology, 2017, 445, 65-73.	1.6	111
27	Insights into the Development of the Adult Leydig Cell Lineage from Stem Leydig Cells. Frontiers in Physiology, 2017, 8, 430.	1.3	200
28	Age and testosterone mediate influenza pathogenesis in male mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 311, L1234-L1244.	1.3	71
29	Repeated exposures of the male Sprague Dawley rat reproductive tract to environmental toxicants: Do earlier exposures to di-(2-ethylhexyl)phthalate (DEHP) alter the effects of later exposures?. Reproductive Toxicology, 2016, 61, 136-141.	1.3	10
30	Transplantation of alginate-encapsulated seminiferous tubules and interstitial tissue into adult rats: Leydig stem cell differentiation inÂvivo?. Molecular and Cellular Endocrinology, 2016, 436, 250-258.	1.6	11
31	Regulation of seminiferous tubule-associated stem Leydig cells in adult rat testes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2666-2671.	3.3	127
32	Mechanism of Testosterone Deficiency in the Transgenic Sickle Cell Mouse. PLoS ONE, 2015, 10, e0128694.	1.1	14
33	Knockout of the transcription factor Nrf2: Effects on testosterone production by aging mouse Leydig cells. Molecular and Cellular Endocrinology, 2015, 409, 113-120.	1.6	53
34	Steroidogenic fate of the Leydig cells that repopulate the testes of young and aged Brown Norway rats after elimination of the preexisting Leydig cells. Experimental Gerontology, 2015, 72, 8-15.	1.2	22
35	Regulation of the Proliferation and Differentiation of Leydig Stem Cells in the Adult Testis1. Biology of Reproduction, 2014, 90, 123.	1.2	54
36	Microsurgical Rat Varicocele Model. Journal of Urology, 2014, 191, 548-553.	0.2	13

#	Article	IF	CITATIONS
37	Oxidative stress and phthalate-induced down-regulation of steroidogenesis in MA-10 Leydig cells. Reproductive Toxicology, 2013, 42, 95-101.	1.3	59
38	Aging and Luteinizing Hormone Effects on Reactive Oxygen Species Production and DNA Damage in Rat Leydig Cells1. Biology of Reproduction, 2013, 88, 100.	1.2	48
39	Identification, Proliferation, and Differentiation of Adult Leydig Stem Cells. Endocrinology, 2012, 153, 5002-5010.	1.4	104
40	Stem Leydig Cell Differentiation: Gene Expression During Development of the Adult Rat Population of Leydig Cells1. Biology of Reproduction, 2011, 85, 1161-1166.	1.2	61
41	Stem Leydig cells: From fetal to aged animals. Birth Defects Research Part C: Embryo Today Reviews, 2010, 90, 272-283.	3.6	74
42	Molecular Mechanisms Mediating the Effect of Mono-(2-Ethylhexyl) Phthalate on Hormone-Stimulated Steroidogenesis in MA-10 Mouse Tumor Leydig Cells. Endocrinology, 2010, 151, 3348-3362.	1.4	78
43	Effect of glutathione redox state on Leydig cell susceptibility to acute oxidative stress. Molecular and Cellular Endocrinology, 2010, 323, 147-154.	1.6	42
44	Identification and Function of Putative Stem Leydig Cells in the Adult Rat Testis Biology of Reproduction, 2010, 83, 22-22.	1.2	0
45	Leydig cell aging and the mechanisms of reduced testosterone synthesis. Molecular and Cellular Endocrinology, 2009, 299, 23-31.	1.6	164
46	Leydig cells: From stem cells to aging. Molecular and Cellular Endocrinology, 2009, 306, 9-16.	1.6	224
47	Effect of Glutathione Depletion on Leydig Cell Steroidogenesis in Young and Old Brown Norway Rats. Endocrinology, 2008, 149, 2612-2619.	1.4	42
48	Cyclooxygenases in Rat Leydig Cells: Effects of Luteinizing Hormone and Aging. Endocrinology, 2007, 148, 735-742.	1.4	33
49	Aging and the Brown Norway Rat Leydig Cell Antioxidant Defense System. Journal of Andrology, 2006, 27, 240-247.	2.0	107
50	Aging and caloric restriction: Effects on Leydig cell steroidogenesis. Experimental Gerontology, 2005, 40, 498-505.	1.2	25
51	Vitamin E, aging and Leydig cell steroidogenesis. Experimental Gerontology, 2005, 40, 728-736.	1.2	93
52	Temporal relationships among testosterone production, steroidogenic acute regulatory protein (StAR), and P450 side-chain cleavage enzyme (P450scc) during Leydig cell aging. Journal of Andrology, 2005, 26, 25-31.	2.0	38
53	Dibutyryl Cyclic Adenosine Monophosphate Restores the Ability of Aged Leydig Cells to Produce Testosterone at the High Levels Characteristic of Young Cells. Endocrinology, 2004, 145, 4441-4446.	1.4	44
54	Leydig cell gene expression: effects of age and caloric restriction. Experimental Gerontology, 2004, 39, 31-43.	1.2	35

#	Article	IF	CITATIONS
55	Gene expression by the anterior pituitary gland: effects of age and caloric restriction. Molecular and Cellular Endocrinology, 2004, 222, 21-31.	1.6	15
56	Age-Related Decreases in Leydig Cell Testosterone Production Are Not Restored by Exposure to LH <i>in Vitro</i> . Endocrinology, 2002, 143, 1637-1642.	1.4	95
57	Cholesterol transport, peripheral benzodiazepine receptor, and steroidogenesis in aging Leydig cells. Journal of Andrology, 2002, 23, 439-47.	2.0	48
58	Age-related increase in mitochondrial superoxide generation in the testosterone-producing cells of Brown Norway rat testes: relationship to reduced steroidogenic function?. Experimental Gerontology, 2001, 36, 1361-1373.	1.2	122
59	Regulation of Leydig Cell Steroidogenic Function During Aging1. Biology of Reproduction, 2000, 63, 977-981.	1.2	229
60	Age-Related Decreases in Leydig Cell Testosterone Production Are Not Restored by Exposure to LH in Vitro. , 0, .		16