List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/967073/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microscale Hierarchical Three-Dimensional Flowerlike TiO ₂ /PANI Composite: Synthesis, Characterization, and Its Remarkable Photocatalytic Activity on Organic Dyes under UV-Light and Sunlight Irradiation. Journal of Physical Chemistry C, 2014, 118, 18343-18355.	3.1	130
2	Hierarchical Hollow Structure ZnO: Synthesis, Characterization, and Highly Efficient Adsorption/Photocatalysis toward Congo Red. Industrial & Engineering Chemistry Research, 2014, 53, 3131-3139.	3.7	111
3	Preparation of porous 3D Ce-doped ZnO microflowers with enhanced photocatalytic performance. RSC Advances, 2015, 5, 59887-59894.	3.6	103
4	Influence of Nd3+ substitution on the microstructure and electromagnetic properties of barium W-type hexaferrite. Journal of Alloys and Compounds, 2010, 490, 552-556.	5.5	100
5	Facile synthesis of Ag/ZnO micro-flowers and their improved ultraviolet and visible light photocatalytic activity. New Journal of Chemistry, 2016, 40, 1587-1594.	2.8	97
6	Phase Diagram of [Amim]Cl + Salt Aqueous Biphasic Systems and Its Application for [Amim]Cl Recovery. Journal of Chemical & Engineering Data, 2009, 54, 2470-2473.	1.9	88
7	Hydrothermal synthesis and luminescent properties of NaLa(MoO4)2:Dy3+ phosphor. Journal of Solid State Chemistry, 2012, 191, 175-180.	2.9	73
8	Synthesis and luminescent properties of high brightness MLa(WO4)2:Eu3+ (M=Li, Na, K) and NaRE(WO4)2:Eu3+ (RE=Gd, Y, Lu) red phosphors. Journal of Luminescence, 2013, 143, 14-20.	3.1	71
9	Effect of different rare-earth elements substitution on microstructure and microwave absorbing properties of Ba0.9RE0.1Co2Fe16O27 (RE=La, Nd, Sm) particles. Journal of Magnetism and Magnetic Materials, 2012, 324, 1209-1213.	2.3	60
10	Synthesis and luminescent properties of high brightness MRE(MoO4)2:Eu3+ (MÂ=ÂLi, Na, K; REÂ=ÂGd, Y, Lu) red phosphors forÂwhite LEDs. Solid State Sciences, 2014, 29, 58-65.	3.2	58
11	Tunable luminescence properties of NaLa(MoO4)2:Ce3+,Tb3+ phosphors for near UV-excited white light-emitting-diodes. Journal of Alloys and Compounds, 2012, 513, 145-149.	5.5	52
12	Structural, dielectric and magnetic properties of Nd-doped Co2Z-type hexaferrites. Journal of Alloys and Compounds, 2011, 509, 4290-4294.	5.5	49
13	Hydrothermal synthesis of hierarchical micron flower-like Î ³ -AlOOH and Î ³ -Al2O3 superstructures from oil shale ash. Powder Technology, 2012, 215-216, 54-58.	4.2	47
14	Hydrothermal synthesis and luminescent properties of NaLa(MoO4)2:Eu3+,Tb3+ phosphors. Journal of Alloys and Compounds, 2013, 550, 1-8.	5.5	46
15	Luminescence properties and charge compensation of Sr3Al2O6 doped with Ce3+ and alkali metal ions. Materials Chemistry and Physics, 2010, 124, 1094-1099.	4.0	44
16	Microwave synthesis and luminescent properties of YVO4:Ln3+ (LnÂ=ÂEu, Dy and Sm) phosphors with different morphologies. Journal of Alloys and Compounds, 2015, 653, 126-134.	5.5	44
17	Facile synthesis and luminescent properties of LaPO4: Eu3+, Sm3+ nanorods via a designed two-step hydrothermal method. Materials Chemistry and Physics, 2012, 133, 263-268.	4.0	43
18	Tunable luminescence and energy transfer properties of KSr4(BO3)3:Dy3+, Eu3+ phosphors for near-UV warm-white LEDs. Journal of Luminescence, 2016, 173, 171-176.	3.1	43

#	Article	IF	CITATIONS
19	Photoluminescence and energy transfer studies on Eu2+ and Ce3+ co-doped SrCaSiO4 for white light-emitting-diodes. Journal of Alloys and Compounds, 2011, 509, 6635-6639.	5.5	41
20	Tunable luminescence properties of the novel Tm ³⁺ - and Dy ³⁺ -codoped LiLa(MoO ₄) _x (WO ₄) _{2â^'x} phosphors for white light-emitting diodes. RSC Advances, 2015, 5, 7049-7057.	3.6	40
21	Two-step hydrothermal synthesis of novel hierarchical Co 3 O 4 /Bi 2 O 2 CO 3 p - n heterojunction composite photocatalyst with enhanced visible light photocatalytic activity. Applied Surface Science, 2017, 400, 365-374.	6.1	39
22	Preparation of nano-sized α-Al2O3 from oil shale ash. Energy, 2010, 35, 45-49.	8.8	35
23	Self-assembled 3D sphere-like SrMoO4 and SrMoO4:Ln3+ (Ln = Eu, Sm, Tb, Dy) microarchitectures: Facile sonochemical synthesis and optical properties. Ultrasonics Sonochemistry, 2014, 21, 1736-1744.	8.2	35
24	Preparation and luminescent properties of CaAl2O4:Eu3+,R+ (R=Li, Na, K) phosphors. Journal of Rare Earths, 2010, 28, 22-25.	4.8	34
25	Green light emission by Ce3+ and Tb3+ co-doped Sr3MgSi2O8 phosphors for potential application in ultraviolet whitelight-emitting diodes. Optics and Laser Technology, 2012, 44, 2306-2311.	4.6	33
26	Hydrothermal synthesis, characterization, and color-tunable luminescence properties of Bi ₂ MoO ₆ :Eu ³⁺ phosphors. RSC Advances, 2015, 5, 29346-29352.	3.6	32
27	Luminescent properties of Sr2Al2SiO7:Ce3+,Eu2+ phosphors for near UV-excited white light-emitting diodes. Materials Letters, 2011, 65, 3418-3420.	2.6	30
28	Sesbania gum-based magnetic carbonaceous nanocomposites: Facile fabrication and adsorption behavior. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 446, 163-171.	4.7	30
29	Facile hydrothermal synthesis and luminescent properties of Sm3+/Eu3+ codoped GdPO4 phosphors. Journal of Physics and Chemistry of Solids, 2017, 111, 355-363.	4.0	29
30	Shape controllable synthesis and multicolour fluorescence of lanthanide doped Vernier yttrium oxyfluoride. Journal of Materials Chemistry C, 2015, 3, 3928-3934.	5.5	26
31	White light-emitting properties of NaGdF ₄ nanotubes through Tb ³⁺ , Eu ³⁺ doping. CrystEngComm, 2015, 17, 7754-7761.	2.6	26
32	Controlled synthesis of different multilayer architectures of GdBO3:Eu3+ phosphors and shape-dependent luminescence properties. Applied Surface Science, 2015, 330, 270-279.	6.1	25
33	Enhanced of Tb 3+ emission in KSr 4 (BO 3) 3 :Dy 3+ , Tb 3+ phosphors via energy transfer from Dy 3+. Journal of Alloys and Compounds, 2015, 651, 679-684.	5.5	24
34	Surface oxygen vacancy induced solar light activity enhancement of a CdWO ₄ /Bi ₂ O ₂ CO ₃ core–shell heterostructure photocatalyst. Physical Chemistry Chemical Physics, 2017, 19, 14431-14441.	2.8	24
35	Facile synthesis and luminescence properties of highly uniform YF3:Ln3+ (Ln=Eu, Tb, Ce, Dy) nanocrystals in ionic liquids. Powder Technology, 2011, 214, 211-217.	4.2	23
36	Monodisperse and hollow structured Y 2 O 3 :Ln 3+ (Ln = Eu, Dy, Er, Tm) nanospheres: A facile synthesis and multicolor-tunable luminescence properties. Journal of Alloys and Compounds, 2014, 617, 498-504.	5.5	23

#	Article	IF	CITATIONS
37	Photoluminescence properties of Tb3+ and Ce3+ co-doped Sr2MgSi2O7 phosphors for solid-state lighting. Journal of Rare Earths, 2015, 33, 366-370.	4.8	22
38	PEG-assisted hydrothermal synthesis and photoluminescence of CdMoO4:Tb3+ green phosphor. Journal of Physics and Chemistry of Solids, 2015, 79, 14-22.	4.0	22
39	Hydrothermal synthesis and luminescent properties of color-tunable Dy3+ doped and Eu3+/Tb3+ co-doped MMoO4 (M=Ca, Sr, Ba) phosphors. Physica B: Condensed Matter, 2015, 458, 8-17.	2.7	22
40	Facile hydrothermal synthesis and multicolor-tunable luminescence of YPO ₄ :Ln ³⁺ (Ln = Eu, Tb). RSC Advances, 2016, 6, 98208-98215.	3.6	22
41	3D Metallic Ti@Ni _{0.85} Se with Triple Hierarchy as Highâ€Efficiency Electrocatalyst for Overall Water Splitting. ChemSusChem, 2019, 12, 2271-2277.	6.8	22
42	Morphology control and multicolor-tunable luminescence of YOF:Ln ³⁺ (Ln = Eu, Tb, Dy,) Tj ETQq0 0 ().rgBT /Ον 2.8	rerlock 10 Tf
43	Surfactant assisted synthesis of the YVO4:Ln3+ (Ln = Eu, Dy, Sm) phosphors and shape-dependent luminescence properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 502, 139-146.	4.7	21
44	Electromagnetic properties and microwave absorption enhancement of Ba0.85RE0.15Co2Fe16O27-polyaniline composites: RE = Gd, Tb, Ho. Colloid and Polymer Science, 2014, 2173-2183.	292,	20
45	Ultrasound-assisted precipitation synthesis of PbMoO4 and PbMoO4:Eu3+ nanocrystals and photoluminescence properties. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 314, 35-41.	3.9	19
46	Tunable luminescence and energy transfer properties of GdPO4:Tb3+, Eu3+ nanocrystals for warm-white LEDs. Optical Materials, 2018, 85, 71-78.	3.6	19
47	Hydrothermal Synthesis of SrMoO4:Eu3+, Sm3+ Phosphors and Their Enhanced Luminescent Properties Through Energy Transfer. Journal of Electronic Materials, 2014, 43, 2588-2596.	2.2	18
48	Controlled synthesis and luminescent properties of different morphologies GdBO3:Eu3+ phosphors self-assembled of nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 472, 109-116.	4.7	18
49	Rapid, morphology-controllable synthesis of GdOF:Ln ³⁺ (Ln = Eu, Tb) crystals with multicolor-tunable luminescence properties. New Journal of Chemistry, 2016, 40, 1792-1798.	2.8	18

50	Morphology-controllable synthesis of LaOF:Ln 3+ (Ln = Eu, Tb) crystals with multicolor luminescence properties. Journal of Colloid and Interface Science, 2015, 460, 273-280.	9.4	17
51	Facile synthesis and color-tunable properties of monodisperse β-NaYF ₄ :Ln ³⁺ (Ln = Eu, Tb, Tm, Sm, Ho) microtubes. Dalton Transactions, 2018, 47, 1294-1302.	3.3	17
52	Extraction of alumina powders from the oil shale ash by hydrometallurgical technology. Powder Technology, 2011, 207, 343-347.	4.2	16
53	Synthesis of hydrophobic alumina aerogel with surface modification from oil shale ash. Powder Technology, 2013, 249, 220-224.	4.2	16
54	Photoluminescence properties and energy transfer in Ce ³⁺ /Dy ³⁺ coâ€doped Sr ₃ MgSi ₂ O ₈ phosphors for potential application in ultraviolet white lightâ€emitting diodes. Luminescence, 2013, 28, 679-684.	2.9	16

4

#	Article	IF	CITATIONS
55	Formation mechanism and optical properties of CdMoO ₄ and CdMoO ₄ :Ln ³⁺ (Ln = Pr, Sm, Eu, Dy, Ho and Er) microspheres synthesized via a facile sonochemical route. RSC Advances, 2014, 4, 38455-38465.	3.6	16
56	Controlled formation of a flower-like CdWO ₄ –BiOCl–Bi ₂ WO ₆ ternary hybrid photocatalyst with enhanced photocatalytic activity through one-pot hydrothermal reaction. New Journal of Chemistry, 2018, 42, 9236-9243.	2.8	16
57	Polyaniline containing W-type hexaferrite composites for microwave absorption in high-frequency applications. Journal of Polymer Research, 2015, 22, 1.	2.4	15
58	Synthesis and luminescent properties of ellipsoid-like YBO3:Ln3+ (Ln=Eu, Tb). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 463, 1-7.	4.7	14
59	Facile controlled synthesis different morphologies of LuBO3:Ln3+ (LnÂ=ÂEu, Tb) phosphors and tunable luminescent properties. Journal of Alloys and Compounds, 2015, 646, 632-638.	5.5	14
60	A novel synthetic route towards monodisperse LaOF:Ln3+ (Ln = Eu, Tb) hollow spheres with multicolor luminescence properties. Physical Chemistry Chemical Physics, 2015, 17, 21485-21491.	2.8	14
61	A novel color-tunable phosphor, Na ₅ Gd ₉ F ₃₂ :Ln ³⁺ (Ln) Tj l Dalton Transactions, 2018, 47, 9795-9803.	ETQq1 1 0.7 3.3	784314 rgBT 14
62	Azeotropic distillation-assisted preparation of nanoscale gamma-alumina powder from waste oil shale ash. Chemical Engineering Journal, 2010, 157, 67-72.	12.7	13
63	Highly bright multicolour emission through energy migration in core/shell nanotubes. Dalton Transactions, 2015, 44, 6645-6654.	3.3	13
64	Novel synthesis route to uniform nanosheet Bi2O2CO3:Eu3+ crystals with luminescence properties. Applied Surface Science, 2015, 357, 255-261.	6.1	13
65	Synthesis and Properties Investigation of Non-equivalent Substituted W-Type Hexaferrite. Journal of Superconductivity and Novel Magnetism, 2014, 27, 411-420.	1.8	11
66	Solvent directed morphologies and enhanced luminescent properties of BaWO 4 :Tm 3+ ,Dy 3+ for white light emitting diodes. Solid State Sciences, 2018, 79, 85-92.	3.2	10
67	A novel synthesis route to monodisperse Na5Lu9F32:Tb3+ phosphors with superior thermal stability. Journal of Luminescence, 2018, 204, 533-538.	3.1	10
68	Solvothermal synthesis and luminescent properties of highly uniform LuF3:Ln3+ (Ln=Eu, Tb, Dy) nanocrystals from ionic liquids. Applied Surface Science, 2014, 307, 393-400.	6.1	9
69	Monodisperse Na0.39Y0.61F2.35:Ln3+ (Ln=Dy, Tb, Eu) and NaYF4 nano-/micromaterials: Controllable morphology, porous structure, tunable multicolor and energy transfer. Journal of Luminescence, 2019, 207, 397-407.	3.1	8
70	Application of Oxidized Cornstarch as a Nonphosphoric Detergent Builder. Journal of Surfactants and Detergents, 2012, 15, 393-398.	2.1	7
71	Synthesis and luminescence properties of a novel phosphor Ca2â^'x/2Si1â^'xPxO4:Eu2+ for near UV-excited white-light-emitting diodes. Journal of Rare Earths, 2013, 31, 871-877.	4.8	7
72	Phase transition, morphology transformation and highly enhanced luminescence properties of YOF:Eu3+ crystals by Gd3+ doping. New Journal of Chemistry, 2015, 39, 7019-7025.	2.8	7

#	Article	IF	CITATIONS
73	Two-step synthetic route towards monodisperse vernier yttrium oxyfluoride with multicolour fluorescence. Journal of Alloys and Compounds, 2018, 739, 972-978.	5.5	7
74	Synthesis and Luminescent Characteristics of Ce3+-Activated Borosilicate Blue-Emitting Phosphors for LEDs. Journal of Spectroscopy, 2016, 2016, 1-5.	1.3	6
75	Chemical conversion synthesis of mesoporous LuPO4: Ln3+ (Ln = Eu, Tb, Dy, Sm) phosphors and tunable luminescent properties. Journal of Luminescence, 2018, 203, 525-532.	3.1	6
76	A facile route to the controlled synthesis of β-NaLuF4:Ln3+ (Ln = Eu, Tb, Dy, Sm, Tm, Ho) phosphors and their tunable luminescence properties. CrystEngComm, 2018, 20, 4763-4770.	2.6	5
77	A novel synthetic route towards monodisperse yttrium hydroxide fluoride by anion exchange and luminescence properties. Optics and Laser Technology, 2019, 111, 372-379.	4.6	5
78	Size and morphology-controlled synthesis of vernier yttrium oxyfluoride towards enhanced photoluminescence and white light emission. New Journal of Chemistry, 2018, 42, 11351-11357.	2.8	4
79	Two-step synthesis of hole structure bastnasite (RECO3F RE = Ce, La, Pr, Nd) sub-microcrystals with tunable luminescence properties. Dalton Transactions, 2018, 47, 15061-15070.	3.3	3
80	Two interpenetrating 3D frameworks based on 12-connected pentanuclear Co5 clusters. Journal of Molecular Structure, 2015, 1091, 159-162.	3.6	2
81	Low temperature oneâ€step synthesis of poly(barbituric acid) functionalized magnetic nanoparticles for removal of heavy metal ions. Journal of Applied Polymer Science, 2014, 131, .	2.6	1