Marcio Celso Fredel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/966959/publications.pdf Version: 2024-02-01

		236833	315616
129	2,179	25	38
papers	citations	h-index	g-index
132	132	132	2365
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Zirconia surface modifications for implant dentistry. Materials Science and Engineering C, 2019, 98, 1294-1305.	3.8	191
2	The Potential Use of Oyster Shell Waste in New Value-Added By-Product. Resources, 2019, 8, 13.	1.6	104
3	A model for PEG removal from alumina injection moulded parts by solvent debinding. Journal of Materials Processing Technology, 2007, 182, 268-273.	3.1	61
4	Mechanical and biological behavior of biomedical PEEK matrix composites: A focused review. Materials Letters, 2016, 185, 593-597.	1.3	61
5	Stereolithography somos 7110 resin: mechanical behavior and fractography of parts post-cured by different methods. Polymer Testing, 2005, 24, 157-162.	2.3	51
6	Optical influence of the type of illuminant, substrates and thickness of ceramic materials. Dental Materials, 2009, 25, 87-93.	1.6	50
7	Ceramic injection moulding: influence of specimen dimensions and temperature on solvent debinding kinetics. Journal of Materials Processing Technology, 2005, 160, 213-220.	3.1	49
8	Biofilm behavior on sulfonated poly(ether-ether-ketone) (sPEEK). Materials Science and Engineering C, 2017, 70, 456-460.	3.8	49
9	Influence of firing temperature on the color developed by a (Zr,V)SiO4 pigmented opaque ceramic glaze. Journal of the European Ceramic Society, 2007, 27, 179-184.	2.8	40
10	Physicochemical and biological assessment of PEEK composites embedding natural amorphous silica fibers for biomedical applications. Materials Science and Engineering C, 2017, 79, 354-362.	3.8	40
11	The bending stress distribution in bilayered and graded zirconia-based dental ceramics. Ceramics International, 2016, 42, 11025-11031.	2.3	36
12	Influence of Nd:YAG Laser Irradiation on an Adhesive Restorative Procedure. Operative Dentistry, 2006, 31, 604-609.	0.6	35
13	Antiâ€biofilm properties of bioactive glasses embedding organic active compounds. Journal of Biomedical Materials Research - Part A, 2017, 105, 672-679.	2.1	35
14	Pigmented glazed ceramic roof tiles in Brazil: Thermal and optical properties related to solar reflectance index. Solar Energy, 2018, 159, 113-124.	2.9	35
15	Adhesion behavior of conventional and highâ€ŧranslucent zirconia: Effect of surface conditioning methods and aging using an experimental methodology. Journal of Esthetic and Restorative Dentistry, 2019, 31, 388-397.	1.8	33
16	In vitro evaluation of bilayer membranes of PLGA/hydroxyapatite/β-tricalcium phosphate for guided bone regeneration. Materials Science and Engineering C, 2020, 112, 110849.	3.8	33
17	Rheological properties of alumina injection feedstocks. Materials Research, 2005, 8, 187-189.	0.6	32
18	Color in ceramic glazes: Analysis of pigment and opacifier grain size distribution effect by spectrophotometer. Journal of the European Ceramic Society, 2008, 28, 1777-1781.	2.8	32

#	Article	IF	CITATIONS
19	Color prediction with simplified Kubelka–Munk model in glazes containing Fe2O3–ZrSiO4 coral pink pigments. Dyes and Pigments, 2013, 99, 1029-1035.	2.0	32
20	New perspectives for recycling dental zirconia waste resulting from CAD/CAM manufacturing process. Journal of Cleaner Production, 2017, 152, 454-463.	4.6	32
21	Microstructure, Mechanical and Wear Behaviors of Hot-Pressed Copper-Nickel-Based Materials for Diamond Cutting Tools. Journal of Materials Engineering and Performance, 2017, 26, 4046-4055.	1.2	31
22	Influence of laser structuring of PEEK, PEEK-GF30 and PEEK-CF30 surfaces on the shear bond strength to a resin cement. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 84, 225-234.	1.5	31
23	Micro-CT based finite element modelling and experimental characterization of the compressive mechanical properties of 3-D zirconia scaffolds for bone tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 102, 103516.	1.5	31
24	Grain size and surface roughness effect on the instability strains in sheet metal stretching. Journal of Materials Processing Technology, 2005, 170, 204-210.	3.1	29
25	On the sulphonated PEEK for implant dentistry: Biological and physicochemical assessment. Materials Chemistry and Physics, 2019, 223, 542-547.	2.0	29
26	Three-dimensional bioactive hydrogel-based scaffolds for bone regeneration in implant dentistry. Materials Science and Engineering C, 2021, 124, 112055.	3.8	28
27	Colouring of opaque ceramic glaze with zircon pigments: Formulation with simplified Kubelka–Munk model. Journal of the European Ceramic Society, 2011, 31, 659-664.	2.8	27
28	Evaluation of in vitro properties of 3D micro-macro porous zirconia scaffolds coated with 58S bioactive glass using MG-63 osteoblast-like cells. Journal of the European Ceramic Society, 2019, 39, 2545-2558.	2.8	27
29	Chemical, microscopic, and microbiological analysis of a functionalized poly-ether-ether-ketone-embedding antibiofilm compounds. Journal of Biomedical Materials Research - Part A, 2016, 104, 3015-3020.	2.1	26
30	Mesoporous bioactive glass embedding propolis and cranberry antibiofilm compounds. Journal of Biomedical Materials Research - Part A, 2018, 106, 1614-1625.	2.1	26
31	ZrO 2 fiber-matrix interfaces in alumina fiber-reinforced model composites. Journal of the European Ceramic Society, 2015, 35, 1593-1598.	2.8	25
32	Colour in ceramic glazes: Efficiency of the Kubelka–Munk model in glazes with a black pigment and opacifier. Journal of the European Ceramic Society, 2009, 29, 2685-2690.	2.8	24
33	New PMMA-co-EHA glass-filled composites for biomedical applications: Mechanical properties and bioactivity. Acta Biomaterialia, 2009, 5, 356-362.	4.1	24
34	Materials and Manufacturing Techniques for Polymeric and Ceramic Scaffolds Used in Implant Dentistry. Journal of Composites Science, 2021, 5, 78.	1.4	24
35	Scaffolds of PDLLA/bioglass 58S produced via selective laser sintering. Materials Research, 2014, 17, 33-38.	0.6	23
36	Inhibition of multiâ€species oral biofilm by bromide doped bioactive glass. Journal of Biomedical Materials Research - Part A, 2017, 105, 1994-2003.	2.1	22

3

#	Article	IF	CITATIONS
37	Bond strength enhancement of zirconia-porcelain interfaces via Nd:YAG laser surface structuring. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 81, 161-167.	1.5	22
38	In-vitro mechanical and biological evaluation of novel zirconia reinforced bioglass scaffolds for bone repair. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 114, 104164.	1.5	22
39	Thermal residual stresses in bilayered, trilayered and graded dental ceramics. Ceramics International, 2017, 43, 3670-3678.	2.3	21
40	Direct Laser Interference Patterning of Bioceramics: A Short Review. Ceramics, 2019, 2, 578-586.	1.0	21
41	Paper-derived hydroxyapatite. Ceramics International, 2013, 39, 7179-7183.	2.3	20
42	On the synergistic effect of sulfonic functionalization and acidic adhesive conditioning to enhance the adhesion of PEEK to resin-matrix composites. Dental Materials, 2021, 37, 741-754.	1.6	19
43	Preparation and study of in vitro bioactivity of PMMA–co–EHA composites filled with a Ca3(PO4)2–SiO2–MgO glass. Materials Science and Engineering C, 2008, 28, 572-577.	3.8	18
44	Influence of interlayer design on residual thermal stresses in trilayered and graded all-ceramic restorations. Materials Science and Engineering C, 2017, 71, 1037-1045.	3.8	18
45	On the synthesis and characterization of β-tricalcium phosphate scaffolds coated with collagen or poly (D, L-lactic acid) for alveolar bone augmentation. European Journal of Dentistry, 2017, 11, 496-502.	0.8	18
46	Manufacturing and characterization of plates for fracture fixation of bone with biocomposites of poly (lactic acid-co-glycolic acid) (PLGA) with calcium phosphates bioceramics. Materials Science and Engineering C, 2019, 103, 109728.	3.8	18
47	Processing and strengthening of 58S bioactive glassâ€infiltrated titania scaffolds. Journal of Biomedical Materials Research - Part A, 2017, 105, 590-600.	2.1	17
48	Properties of PLDLA/bioglass scaffolds produced by selective laser sintering. Polymer Bulletin, 2018, 75, 1299-1309.	1.7	17
49	Low-pressure processing and microstructural evaluation of unidirectional carbon fiber-reinforced aluminum-nickel matrix composites. Journal of Materials Processing Technology, 2019, 269, 10-15.	3.1	17
50	<i>In vivo</i> human electrochemical properties of a NiTiâ€based alloy (Nitinol) used for minimally invasive implants. Journal of Biomedical Materials Research - Part A, 2009, 89A, 1072-1078.	2.1	16
51	Copper–nickel-based diamond cutting tools: stone cutting evaluation. International Journal of Advanced Manufacturing Technology, 2017, 92, 1339-1348.	1.5	16
52	Nickel-cobalt-based materials for diamond cutting tools. International Journal of Advanced Manufacturing Technology, 2018, 95, 1059-1067.	1.5	15
53	Influence of laser texturing on surface features, mechanical properties and low-temperature degradation behavior of 3Y-TZP. Ceramics International, 2020, 46, 3502-3512.	2.3	15
54	Biomechanical analyses of oneâ€piece dental implants composed of titanium, zirconia, <scp>PEEK</scp> , <scp>CFRâ€PEEK</scp> , or <scp>GFRâ€PEEK</scp> : Stresses, strains, and bone remodeling prediction by the finite element method. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 79-88.	1.6	15

#	Article	IF	CITATIONS
55	Polymer coatings based on sulfonated-poly-ether-ether-ketone films for implant dentistry applications. Journal of Materials Science: Materials in Medicine, 2018, 29, 132.	1.7	14
56	Electrospun fibrous membranes of poly (lactic-co-glycolic acid) with β-tricalcium phosphate for guided bone regeneration application. Polymer Testing, 2020, 86, 106489.	2.3	14
57	Application of Kubelka-Munk model on the optical characterization of translucent dental zirconia. Materials Chemistry and Physics, 2021, 258, 123994.	2.0	14
58	Wear mechanism and morphologic space in ceramic honing process. Wear, 2016, 362-363, 33-38.	1.5	13
59	On the mechanical properties of monolithic and laminated nano-ceramic resin structures obtained by laser printing. Composites Part B: Engineering, 2018, 141, 76-83.	5.9	13
60	Release of simvastatin from scaffolds of poly(lacticâ€coâ€glycolic) acid and biphasic ceramic designed for bone tissue regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 2152-2164.	1.6	13
61	Biomechanical behavior of functionally graded S53P4 bioglass-zirconia dental implants: Experimental and finite element analyses. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 120, 104565.	1.5	13
62	Properties of chemically treated natural amorphous silica fibers as polyurethane reinforcement. Polymer Composites, 2006, 27, 582-590.	2.3	12
63	Synthesis and Characterization of Calcium Phosphate Compounds with Strontium and Magnesium Ionic Substitutions. International Journal of Morphology, 2015, 33, 1189-1193.	0.1	12
64	Optimized route for the production of zirconia structures with controlled surface porosity for biomedical applications. Ceramics International, 2018, 44, 12496-12503.	2.3	12
65	Effect of power modulation frequency on porosity formation in laser welding of SAE 1020 steels. International Journal of Advanced Manufacturing Technology, 2021, 112, 2509-2517.	1.5	12
66	Impact of laboratory treatment with coloring and fluorescent liquids on the optical properties of zirconia before and after accelerated aging. Journal of Prosthetic Dentistry, 2018, 120, 276-281.	1.1	11
67	Mechanical integrity of cement- and screw-retained zirconium-lithium silicate glass-ceramic crowns to Morse taper implants. Journal of Prosthetic Dentistry, 2018, 120, 721-731.	1.1	11
68	Influence of ns-Nd:YAG laser surface treatment on the tensile bond strength of zirconia to resin-matrix cements. Ceramics International, 2020, 46, 27822-27831.	2.3	11
69	Wear behaviour of tetragonal zirconia polycrystal with a porous surface. International Journal of Refractory Metals and Hard Materials, 2018, 75, 85-93.	1.7	10
70	Mechanical properties of zirconia periodic open cellular structures. Ceramics International, 2019, 45, 15799-15806.	2.3	10
71	Laser power modulation to grain refinement of SAE 1045 steel welds. Journal of Laser Applications, 2020, 32, .	0.8	10

Paper-derived Î²-TCP. Materials Letters, 2013, 98, 161-163.

1.3 9

#	Article	IF	CITATIONS
73	Production and characterization of zirconia structures with a porous surface. Materials Science and Engineering C, 2019, 101, 264-273.	3.8	9
74	Ecological footprint of biomaterials for implant dentistry: is the metal-free practice an eco-friendly shift?. Journal of Cleaner Production, 2019, 213, 723-732.	4.6	9
75	Assessment of power modulation formats on penetration depth for laser welding. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43, 1.	0.8	9
76	Paperâ€Derived Bioactive Glass Tape. Advanced Engineering Materials, 2013, 15, 230-237.	1.6	8
77	Powder Metallurgical Synthesis of Biodegradable Mg-Hydroxyapatite Composites for Biomedical Applications. Materials Science Forum, 0, 828-829, 165-171.	0.3	8
78	Artificial Aging of Zirconium Dioxide: An Evaluation of Current Knowledge and Clinical Relevance. Current Oral Health Reports, 2016, 3, 193-197.	0.5	8
79	Influence of specimens' geometry and materials on the thermal stresses in dental restorative materials during thermal cycling. Journal of Dentistry, 2018, 69, 41-48.	1.7	8
80	Influence of calcium phosphates incorporation into poly(lactic-co-glycolic acid) electrospun membranes for guided bone regeneration. Polymer Degradation and Stability, 2020, 179, 109253.	2.7	8
81	Adhesion of PEEK to resin-matrix composites used in dentistry: a short review on surface modification and bond strength. Journal of Adhesion Science and Technology, 0, , 1-12.	1.4	7
82	Chitosan/β-TCP composites scaffolds coated with silk fibroin: a bone tissue engineering approach. Biomedical Materials (Bristol), 2022, 17, 015003.	1.7	7
83	Chemical tempering of feldspathic porcelain for dentistry applications: A review. Open Ceramics, 2022, 9, 100201.	1.0	7
84	Modifications of the sol-gel method for the preparation of ultrafine/ultrapure ceramic oxide powders-properties of the powders and microstructure of the derived ceramic bodies. Scripta Materialia, 1993, 3, 77-84.	0.5	6
85	Sliding behavior of zirconia porous implant surfaces against bone. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 1113-1121.	1.6	6
86	Development of a TiC _p Reinforced Ni-Based Superalloy MMC, with High Creep Resistance and Reduced Weight. Key Engineering Materials, 0, 742, 189-196.	0.4	5
87	Y-TZP/porcelain graded dental restorations design for improved damping behavior – A study on damping capacity and dynamic Young's modulus. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 96, 219-226.	1.5	5
88	Laser metal deposition strategies for repairing flat and notched substrates made of Ni-based single crystalline superalloys. Journal of Laser Applications, 2019, 31, 022513.	0.8	5
89	Shear bond strength of PEEK and PEEK-30GF cemented to zirconia or titanium substrates. Journal of Adhesion Science and Technology, 2019, 33, 1090-1101.	1.4	5
90	Improvement of 3Y-TZP aging behavior by means of zirconia-based protective layers. Journal of the European Ceramic Society, 2020, 40, 4315-4322.	2.8	5

#	Article	IF	CITATIONS
91	Effect of laser irradiation on the adhesion of resin-based materials to zirconia: a systematic review and meta-analysis. Journal of Adhesion Science and Technology, 2021, 35, 1035-1056.	1.4	5
92	Reducing processing-induced residual stresses in SAE 4140 steels laser welded using modulated power emission. Optics and Laser Technology, 2021, 140, 107032.	2.2	5
93	Self-reinforced bioresorbable polymer P (L/DL) LA 70:30 for the manufacture of craniofacial implant. Polimeros, 2012, 22, 378-383.	0.2	5
94	Evaluation of texture distribution during the industrial polishing process of porcelain stoneware tiles. Journal of the European Ceramic Society, 2013, 33, 3369-3378.	2.8	4
95	Wettability modification of laser textured copper surfaces applied to phase change heat transfer. Journal of Laser Applications, 2020, 32, .	0.8	4
96	Numerical and experimental study of ion exchange in porcelain tiles. International Journal of Applied Ceramic Technology, 2021, 18, 1025-1032.	1.1	4
97	<scp>PLLA</scp> / <scp>HA</scp> Composite Laminates. Advanced Engineering Materials, 2013, 15, 1122-1124.	1.6	3
98	Numerical Evaluation of a Light-Gas Gun Facility for Impact Test. Modelling and Simulation in Engineering, 2014, 2014, 1-6.	0.4	3
99	Particle-Filled Polysilazane Coatings for Steel Protection. Advanced Materials Research, 0, 975, 149-153.	0.3	3
100	Influence of Distinct Manufacturing Processes on the Microstructure of Ni-Based Metal Matrix Composites Submitted to Long Thermal Exposure. Key Engineering Materials, 2019, 809, 79-86.	0.4	3
101	Effect of dip-coating process on mechanical behavior of 3Y-TZP using different aging-free coatings. Ceramics International, 2021, 47, 6896-6904.	2.3	3
102	Effective Fracture Toughness of Brittle Matrix/Ductile Dispersion Composite Materials. Science and Engineering of Composite Materials, 1995, 4, .	0.6	2
103	Nanostructured biocompatible ceramics and glass-ceramics. , 2018, , 97-118.		2
104	Chemical modification of porcelain tile surface to optimize flexural strength and Weibull modulus through the ion exchange process. Journal of Building Engineering, 2022, 56, 104735.	1.6	2
105	Moldagem por injeção de pós cerâmicos: remoção da parafina e do polipropileno utilizados como veÃculo orgânico. Polimeros, 2004, 14, 150-155.	0.2	1
106	Porous Media of LZSA Glass-Ceramic for Burner Applications. Materials Science Forum, 2012, 727-728, 686-690.	0.3	1
107	Determination of Solar Reflectance Index of Ceramic Coatings for Use in outside Surfaces. Materials Science Forum, 0, 881, 251-256.	0.3	1
108	Microtensile bond strength of zirconia after surface treatments and aging. Dental Materials, 2018, 34, e100-e101.	1.6	1

#	Article	IF	CITATIONS
109	Mechanical and tribological performance of Ni–Co-based binders for cubic boron nitride cutting tools. Journal of Composite Materials, 2020, 54, 2753-2760.	1.2	1
110	On the production of novel zirconia-reinforced bioactive glassÂporous structures for bone repair. Journal of Materials Science, 2021, 56, 11682-11697.	1.7	1
111	Influence of the Addition of Niâ€Coated Carbon Nanotubes on the Mechanical Properties of Highly Porous Zirconia Cellular Structures. Advanced Engineering Materials, 2022, 24, 2100624.	1.6	1
112	Assessment of zirconia fluorescence after treatment with immersion in liquids, glass infiltration and aging. Ceramics International, 2021, 47, 27511-27523.	2.3	1
113	Manufacturing of Porous PPLA-HA Composite Scaffolds by Sintering for Bone Tissue Engineering. Ceramic Engineering and Science Proceedings, 0, , 169-177.	0.1	1
114	ASSESSING THE POSSIBILITY OF MACHINING OF THE SELF-REINFORCED BIORESORBABLE POLYMER P(L/DL)LA 70:30. Machining Science and Technology, 2011, 15, 392-414.	1.4	0
115	Characterization of Silicon Carbide Grit for Fickerts Used in Porcelain Tile Honing and Polishing Process. Advanced Materials Research, 2011, 325, 548-554.	0.3	0
116	Effect of Sense and Spacing in Parallel Scratches during Brittle Machining of Stoneware Tiles. Materials Science Forum, 2012, 727-728, 640-645.	0.3	0
117	Mullite Formation in Al2O3/SiO2/SiC Composites for Processing Porous Radiant Burners. Materials Research Society Symposia Proceedings, 2013, 1492, 169-175.	0.1	0
118	Surface morphology and fracture strength analysis of nanosecond ablated alumina. Journal of the Ceramic Society of Japan, 2015, 123, 160-166.	0.5	0
119	Influence of α-Phase Field Heat Treatment on the Tensile and Primary Creep Resistance of a Powder Metallurgical Processed Ti-45Al-5Nb-0.2B-0.2C Titanium Aluminide Alloy. Materials Science Forum, 0, 899, 418-423.	0.3	0
120	Functionally graded nanostructured biomaterials (FGNB). , 2018, , 159-180.		0
121	Nanostructured biomaterials embedding bioactive molecules. , 2018, , 143-158.		0
122	Powder Metallurgical Synthesis of Biodegradable Mg-Hydroxyapatite Composites for Biomedical Applications. , 2015, , 425-429.		0
123	PROCESSING AND MORPHOLOGICAL ANALYSIS OF A TWO-LAYER CERAMIC STRUCTURE FOR CAPILLARY EVAPORATORS. , 0, , .		0
124	DETERMINAÇÃO DO ÃNDICE DE REFLECTÃ,NCIA SOLAR DE TELHAS COMERCIALIZADAS NA REGIÃO DO MÃ% VALE DO ITAJAÕSC. Cerâmica Industrial, 2016, 21, 18-22.	0.0 0.1	0
125	Yb-fiber powder laser cladding of Inconel 625. , 2017, , .		0
126	The freeze casting method as a production alternative for ceramic capillary evaporators. , 2017, , .		0

8

#	Article	IF	CITATIONS
127	Novel strategies for the enhancement of zirconia behavior. , 2017, , 11-13.		Ο
128	Freeze-Casting Method as an Alternative for Ceramic Capillary Evaporator Manufacturing. , 2020, , .		0
129	Evaluation of magnesium chloride waste recovery: A case study in nanofertilizers. Revista Brasileira De Gestão Ambiental E Sustentabilidade, 2022, 9, 419-437.	0.0	0