Theresa M Reineke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/966775/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydroxyl Stereochemistry and Amine Number within Poly(glycoamidoamine)s Affect Intracellular DNA Delivery. Journal of the American Chemical Society, 2005, 127, 3004-3015.	6.6	234
2	Polycationic β-Cyclodextrin "Click Clustersâ€ : Monodisperse and Versatile Scaffolds for Nucleic Acid Delivery. Journal of the American Chemical Society, 2008, 130, 4618-4627.	6.6	204
3	Trehalose Click Polymers Inhibit Nanoparticle Aggregation and Promote pDNA Delivery in Serum. Journal of the American Chemical Society, 2006, 128, 8176-8184.	6.6	191
4	Next-generation polymers: Isosorbide as a renewable alternative. Progress in Polymer Science, 2020, 101, 101196.	11.8	140
5	Polymeric Delivery of Therapeutic Nucleic Acids. Chemical Reviews, 2021, 121, 11527-11652.	23.0	138
6	New Poly(d-glucaramidoamine)s Induce DNA Nanoparticle Formation and Efficient Gene Delivery into Mammalian Cells. Journal of the American Chemical Society, 2004, 126, 7422-7423.	6.6	133
7	Structural Effects of Carbohydrate-Containing Polycations on Gene Delivery. 1. Carbohydrate Size and Its Distance from Charge Centers. Bioconjugate Chemistry, 2003, 14, 247-254.	1.8	122
8	Nonviral Gene Delivery with Cationic Glycopolymers. Accounts of Chemical Research, 2019, 52, 1347-1358.	7.6	116
9	Deciphering the Role of Hydrogen Bonding in Enhancing pDNAâ ^{~^} Polycation Interactions. Langmuir, 2007, 23, 9773-9784.	1.6	114
10	Sustainable advances in SLA/DLP 3D printing materials and processes. Green Chemistry, 2021, 23, 6863-6897.	4.6	111
11	Structural Effects of Carbohydrate-Containing Polycations on Gene Delivery. 2. Charge Center Type. Bioconjugate Chemistry, 2003, 14, 255-261.	1.8	104
12	Acrylic Triblock Copolymers Incorporating Isosorbide for Pressure Sensitive Adhesives. ACS Sustainable Chemistry and Engineering, 2016, 4, 3379-3387.	3.2	102
13	Poly(glycoamidoamine)s for Gene Delivery. Structural Effects on Cellular Internalization, Buffering Capacity, and Gene Expression. Bioconjugate Chemistry, 2007, 18, 19-30.	1.8	99
14	Defining the Macromolecules of Tomorrow through Synergistic Sustainable Polymer Research. Chemical Reviews, 2022, 122, 6322-6373.	23.0	99
15	Membrane and Nuclear Permeabilization by Polymeric pDNA Vehicles: Efficient Method for Gene Delivery or Mechanism of Cytotoxicity?. Molecular Pharmaceutics, 2012, 9, 523-538.	2.3	98
16	Advances in Polymer Design for Enhancing Oral Drug Solubility and Delivery. Bioconjugate Chemistry, 2018, 29, 939-952.	1.8	97
17	Stimuli-Responsive Polymers for Biological Detection and Delivery. ACS Macro Letters, 2016, 5, 14-18.	2.3	95
18	Sustainable near UV-curable acrylates based on natural phenolics for stereolithography 3D printing. Polymer Chemistry, 2019, 10, 1067-1077.	1.9	94

2

#	Article	IF	CITATIONS
19	Polymer beacons for luminescence and magnetic resonance imaging of DNA delivery. Proceedings of the United States of America, 2009, 106, 16913-16918.	3.3	90
20	Isosorbide-based Polymethacrylates. ACS Sustainable Chemistry and Engineering, 2015, 3, 662-667.	3.2	89
21	Poly(glycoamidoamine) Vehicles Promote pDNA Uptake through Multiple Routes and Efficient Gene Expression via Caveolae-Mediated Endocytosis. Molecular Pharmaceutics, 2010, 7, 738-750.	2.3	87
22	Effects of trehalose click polymer length on pDNA complex stability and delivery efficacy. Biomaterials, 2007, 28, 2885-2898.	5.7	85
23	Diblock Glycopolymers Promote Colloidal Stability of Polyplexes and Effective pDNA and siRNA Delivery under Physiological Salt and Serum Conditions. Biomacromolecules, 2011, 12, 3015-3022.	2.6	85
24	Molecular Affinity Agents for Intrinsic Surface-Enhanced Raman Scattering (SERS) Sensors. ACS Applied Materials & Interfaces, 2018, 10, 31825-31844.	4.0	85
25	Poly(trehalose): Sugar-Coated Nanocomplexes Promote Stabilization and Effective Polyplex-Mediated siRNA Delivery. Journal of the American Chemical Society, 2013, 135, 15417-15424.	6.6	82
26	Polycation Architecture and Assembly Direct Successful Gene Delivery: Micelleplexes Outperform Polyplexes via Optimal DNA Packaging. Journal of the American Chemical Society, 2019, 141, 15804-15817.	6.6	77
27	Interaction of Poly(ethylenimine)–DNA Polyplexes with Mitochondria: Implications for a Mechanism of Cytotoxicity. Molecular Pharmaceutics, 2011, 8, 1709-1719.	2.3	76
28	Polymeric Nucleic Acid Vehicles Exploit Active Interorganelle Trafficking Mechanisms. ACS Nano, 2013, 7, 347-364.	7.3	76
29	Predictable Heating and Positive MRI Contrast from a Mesoporous Silica-Coated Iron Oxide Nanoparticle. Molecular Pharmaceutics, 2016, 13, 2172-2183.	2.3	75
30	Investigating the Effects of Block versus Statistical Glycopolycations Containing Primary and Tertiary Amines for Plasmid DNA Delivery. Biomacromolecules, 2014, 15, 2616-2628.	2.6	71
31	Sustainable Polyesters Derived from Glucose and Castor Oil: Building Block Structure Impacts Properties. ACS Macro Letters, 2015, 4, 284-288.	2.3	69
32	Poly(glycoamidoamine)s for Gene Delivery:Â Stability of Polyplexes and Efficacy with Cardiomyoblast Cells. Bioconjugate Chemistry, 2006, 17, 101-108.	1.8	67
33	Versatile supramolecular pDNA vehicles via "click polymerization―of β-cyclodextrin with oligoethyleneamines. Biomaterials, 2009, 30, 928-938.	5.7	66
34	Cross-linker Chemistry Determines the Uptake Potential of Perfluorinated Alkyl Substances by β-Cyclodextrin Polymers. Macromolecules, 2019, 52, 3747-3752.	2.2	64
35	Tuning Cationic Block Copolymer Micelle Size by pH and Ionic Strength. Biomacromolecules, 2016, 17, 2849-2859.	2.6	63
36	High-Throughput Excipient Discovery Enables Oral Delivery of Poorly Soluble Pharmaceuticals. ACS Central Science, 2016, 2, 748-755.	5.3	62

#	Article	IF	CITATIONS
37	Architectural Control of Isosorbide-Based Polyethers via Ring-Opening Polymerization. Journal of the American Chemical Society, 2019, 141, 5107-5111.	6.6	62
38	Exploring the Mechanism of Plasmid DNA Nuclear Internalization with Polymer-Based Vehicles. Molecular Pharmaceutics, 2012, 9, 2256-2267.	2.3	60
39	Glucose-Functionalized, Serum-Stable Polymeric Micelles from the Combination of Anionic and RAFT Polymerizations. Macromolecules, 2012, 45, 4322-4332.	2.2	60
40	Efficient Polymer-Mediated Delivery of Gene-Editing Ribonucleoprotein Payloads through Combinatorial Design, Parallelized Experimentation, and Machine Learning. ACS Nano, 2020, 14, 17626-17639.	7.3	58
41	Sustainable glucose-based block copolymers exhibit elastomeric and adhesive behavior. Polymer Chemistry, 2016, 7, 5233-5240.	1.9	56
42	Tuning PNIPAm self-assembly and thermoresponse: roles of hydrophobic end-groups and hydrophilic comonomer. Polymer Chemistry, 2019, 10, 3469-3479.	1.9	56
43	Structure/property relationships in copolymers comprising renewable isosorbide, glucarodilactone, and 2,5-bis(hydroxymethyl)furan subunits. Polymer Chemistry, 2017, 8, 3746-3754.	1.9	53
44	Glucose-Containing Diblock Polycations Exhibit Molecular Weight, Charge, and Cell-Type Dependence for pDNA Delivery. Biomacromolecules, 2014, 15, 1716-1726.	2.6	51
45	Epoxy Resin Thermosets Derived from Trehalose and β-Cyclodextrin. Macromolecules, 2016, 49, 8397-8406.	2.2	51
46	Rapid Synthesis of Chemically Recyclable Polycarbonates from Renewable Feedstocks. ACS Macro Letters, 2021, 10, 98-103.	2.3	50
47	Correlation of Amine Number and pDNA Binding Mechanism for Trehalose-Based Polycations. Langmuir, 2008, 24, 8090-8101.	1.6	49
48	Packaging pDNA by Polymeric ABC Micelles Simultaneously Achieves Colloidal Stability and Structural Control. Journal of the American Chemical Society, 2018, 140, 11101-11111.	6.6	49
49	General Structure–Activity Relationship for Poly(glycoamidoamine)s: The Effect of Amine Density on Cytotoxicity and DNA Delivery Efficiency. Bioconjugate Chemistry, 2008, 19, 428-440.	1.8	48
50	Open-to-Air RAFT Polymerization in Complex Solvents: From Whisky to Fermentation Broth. ACS Macro Letters, 2018, 7, 406-411.	2.3	48
51	Block Polymer Micelles Enable CRISPR/Cas9 Ribonucleoprotein Delivery: Physicochemical Properties Affect Packaging Mechanisms and Gene Editing Efficiency. Macromolecules, 2019, 52, 8197-8206.	2.2	48
52	Degradation of Poly(glycoamidoamine) DNA Delivery Vehicles: Polyamide Hydrolysis at Physiological Conditions Promotes DNA Release. Biomacromolecules, 2010, 11, 316-325.	2.6	47
53	pH- and Ionic-Strength-Induced Contraction of Polybasic Micelles in Buffered Aqueous Solutions. Macromolecules, 2015, 48, 2677-2685.	2.2	47
54	Precise Compositional Control and Systematic Preparation of Multimonomeric Statistical Copolymers. ACS Macro Letters, 2013, 2, 770-774.	2.3	46

#	Article	IF	CITATIONS
55	Enhanced Mechanical and Adhesion Properties in Sustainable Triblock Copolymers via Non-covalent Interactions. Macromolecules, 2018, 51, 2456-2465.	2.2	46
56	Carbohydrate Polymers for Nonviral Nucleic Acid Delivery. Topics in Current Chemistry, 2010, 296, 131-190.	4.0	45
57	Cationic glycopolymers for the delivery of pDNA to human dermal fibroblasts and rat mesenchymal stem cells. Biomaterials, 2012, 33, 1851-1862.	5.7	44
58	Peptide-Functionalized Poly(ethylene glycol) Star Polymers: DNA Delivery Vehicles with Multivalent Molecular Architecture. Bioconjugate Chemistry, 2008, 19, 76-88.	1.8	43
59	Poly(2-deoxy-2-methacrylamido glucopyranose)- <i>b</i> Poly(methacrylate amine)s: Optimization of Diblock Glycopolycations for Nucleic Acid Delivery. ACS Macro Letters, 2013, 2, 230-235.	2.3	43
60	Deconstructing HPMCAS: Excipient Design to Tailor Polymer–Drug Interactions for Oral Drug Delivery. ACS Biomaterials Science and Engineering, 2015, 1, 978-990.	2.6	42
61	<i>N</i> -Acetylgalactosamine Block- <i>co</i> -Polycations Form Stable Polyplexes with Plasmids and Promote Liver-Targeted Delivery. Biomacromolecules, 2016, 17, 830-840.	2.6	42
62	Trehalose-Based Block Copolycations Promote Polyplex Stabilization for Lyophilization and in Vivo pDNA Delivery. ACS Biomaterials Science and Engineering, 2016, 2, 43-55.	2.6	42
63	In Vivo Delivery of Nucleic Acids via Glycopolymer Vehicles Affords Therapeutic Infarct Size Reduction In Vivo. Molecular Therapy, 2012, 20, 601-608.	3.7	41
64	Degradable Thermosets from Sugar-Derived Dilactones. Macromolecules, 2014, 47, 498-505.	2.2	38
65	Poly(glycoamidoamine)s: Cationic glycopolymers for DNA delivery. Journal of Polymer Science Part A, 2006, 44, 6895-6908.	2.5	36
66	Interpolyelectrolyte Complexes of Polycationic Micelles and Linear Polyanions: Structural Stability and Temporal Evolution. Journal of Physical Chemistry B, 2015, 119, 15919-15928.	1.2	35
67	2-Hydroxyethylcellulose and Amphiphilic Block Polymer Conjugates Form Mechanically Tunable and Nonswellable Hydrogels. ACS Macro Letters, 2017, 6, 145-149.	2.3	35
68	Amide Spacing Influences pDNA Binding of Poly(amidoamine)s. Biomacromolecules, 2010, 11, 326-332.	2.6	34
69	Cationic Bottlebrush Polymers Outperform Linear Polycation Analogues for pDNA Delivery and Gene Expression. ACS Macro Letters, 2021, 10, 886-893.	2.3	34
70	Interaction of Poly(glycoamidoamine) DNA Delivery Vehicles with Cell-Surface Glycosaminoglycans Leads to Polyplex Internalization in a Manner Not Solely Dependent on Charge. Molecular Pharmaceutics, 2010, 7, 1757-1768.	2.3	33
71	Design of Tunable Multicomponent Polymers as Modular Vehicles To Solubilize Highly Lipophilic Drugs. Macromolecules, 2014, 47, 6554-6565.	2.2	33
72	SERS Detection of Ricin B-Chain via <i>N</i> -Acetyl-Galactosamine Glycopolymers. ACS Sensors, 2016, 1, 842-846.	4.0	32

#	Article	IF	CITATIONS
73	Activation of Cellulose via Cooperative Hydroxyl-Catalyzed Transglycosylation of Glycosidic Bonds. ACS Catalysis, 2019, 9, 1943-1955.	5.5	32
74	Advancing Polymeric Delivery Systems Amidst a Nucleic Acid Therapy Renaissance. ACS Macro Letters, 2013, 2, 928-934.	2.3	31
75	Solution-State Polymer Assemblies Influence BCS Class II Drug Dissolution and Supersaturation Maintenance. Biomacromolecules, 2014, 15, 500-511.	2.6	31
76	Polymer Day: Outreach Experiments for High School Students. Journal of Chemical Education, 2017, 94, 1629-1638.	1.1	31
77	Complexation of DNA with Cationic Copolymer Micelles: Effects of DNA Length and Topology. Macromolecules, 2018, 51, 1150-1160.	2.2	31
78	Poly(glycoamidoamine)s: a broad class of carbohydrate-containing polycations for nucleic acid delivery. Trends in Biotechnology, 2011, 29, 443-453.	4.9	30
79	MAG versus PEG: Incorporating a Poly(MAG) Layer to Promote Colloidal Stability of Nucleic Acid/"Click Cluster―Complexes. ACS Macro Letters, 2012, 1, 609-613.	2.3	29
80	Highlighting the Role of Polymer Length, Carbohydrate Size, and Nucleic Acid Type in Potency of Glycopolycation Agents for pDNA and siRNA Delivery. Biomacromolecules, 2013, 14, 3903-3915.	2.6	28
81	Bottlebrush Polymer Excipients Enhance Drug Solubility: Influence of End-Group Hydrophilicity and Thermoresponsiveness. ACS Macro Letters, 2021, 10, 375-381.	2.3	28
82	Facially amphiphilic polyionene biocidal polymers derived from lithocholic acid. Bioactive Materials, 2018, 3, 186-193.	8.6	27
83	Hydrogenolysis of Linear Low-Density Polyethylene during Heterogeneous Catalytic Hydrogen–Deuterium Exchange. Macromolecules, 2020, 53, 6043-6055.	2.2	27
84	Direct Observation of Nanostructures during Aqueous Dissolution of Polymer/Drug Particles. Macromolecules, 2017, 50, 3143-3152.	2.2	26
85	Degradable and renewably-sourced poly(ester-thioethers) by photo-initiated thiol–ene polymerization. Polymer Chemistry, 2018, 9, 3272-3278.	1.9	26
86	Dissolution and Solubility Enhancement of the Highly Lipophilic Drug Phenytoin via Interaction with Poly(<i>N</i> -isopropylacrylamide- <i>co</i> -vinylpyrrolidone) Excipients. Molecular Pharmaceutics, 2015, 12, 2537-2543.	2.3	25
87	New Insights into Quinine–DNA Binding Using Raman Spectroscopy and Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2018, 122, 9840-9851.	1.2	25
88	Internal Structure of Methylcellulose Fibrils. Macromolecules, 2020, 53, 398-405.	2.2	22
89	Combinatorial Polycation Synthesis and Causal Machine Learning Reveal Divergent Polymer Design Rules for Effective pDNA and Ribonucleoprotein Delivery. Jacs Au, 2022, 2, 428-442.	3.6	22
90	Architecture-Dependent Stabilization of Polyelectrolyte Complexes between Polyanions and Cationic Triblock Terpolymer Micelles. Macromolecules, 2016, 49, 6644-6654.	2.2	21

#	Article	IF	CITATIONS
91	Cell Penetrating Polymers Containing Guanidinium Trigger Apoptosis in Human Hepatocellular Carcinoma Cells unless Conjugated to a Targeting N-Acetyl-Galactosamine Block. Bioconjugate Chemistry, 2017, 28, 2985-2997.	1.8	21
92	Structure–Activity Examination of Poly(glycoamidoguanidine)s: Glycopolycations Containing Guanidine Units for Nucleic Acid Delivery. Biomacromolecules, 2011, 12, 2055-2063.	2.6	20
93	Glucose-Based Poly(ester amines): Synthesis, Degradation, and Biological Delivery. ACS Macro Letters, 2012, 1, 1388-1392.	2.3	20
94	Effects of Trehalose Polycation End-Group Functionalization on Plasmid DNA Uptake and Transfection. Biomacromolecules, 2012, 13, 2229-2239.	2.6	20
95	Computational Prediction and Experimental Verification of ε-Caprolactone Ring-Opening Polymerization Activity by an Aluminum Complex of an Indolide/Schiff-Base Ligand. ACS Catalysis, 2019, 9, 885-889.	5.5	20
96	Quinine copolymer reporters promote efficient intracellular DNA delivery and illuminate a protein-induced unpackaging mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32919-32928.	3.3	20
97	Sustainable and Degradable Epoxy Resins from Trehalose, Cyclodextrin, and Soybean Oil Yield Tunable Mechanical Performance and Cell Adhesion. ACS Sustainable Chemistry and Engineering, 2018, 6, 14967-14978.	3.2	19
98	Block Copolymer Pressure-Sensitive Adhesives Derived from Fatty Acids and Triacetic Acid Lactone. ACS Applied Polymer Materials, 2020, 2, 2719-2728.	2.0	19
99	Isothermal Titration Calorimetry for the Screening of Aflatoxin B1 Surface-Enhanced Raman Scattering Sensor Affinity Agents. Analytical Chemistry, 2018, 90, 13409-13418.	3.2	18
100	Delivery of Proteins and Nucleic Acids: Achievements and Challenges. Bioconjugate Chemistry, 2019, 30, 261-262.	1.8	18
101	Spatiotemporal Cellular Imaging of Polymer–pDNA Nanocomplexes Affords in Situ Morphology and Trafficking Trends. Molecular Pharmaceutics, 2013, 10, 4120-4135.	2.3	17
102	Diffusion of Drug Delivery Nanoparticles into Biogels Using Time-Resolved MicroMRI. Journal of Physical Chemistry Letters, 2014, 5, 3825-3830.	2.1	17
103	Optimizing linear polymer affinity agent properties for surface-enhanced Raman scattering detection of aflatoxin B1. Molecular Systems Design and Engineering, 2019, 4, 1019-1031.	1.7	17
104	Degradable Thermoset Fibers from Carbohydrate-Derived Diols via Thiol–Ene Photopolymerization. ACS Applied Polymer Materials, 2019, 1, 2933-2942.	2.0	17
105	Heparin Enhances Transfection in Concert with a Trehalose-Based Polycation with Challenging Cell Types. Biomacromolecules, 2017, 18, 56-67.	2.6	16
106	Quantitation of Complexed versus Free Polymers in Interpolyelectrolyte Polyplex Formulations. ACS Macro Letters, 2013, 2, 1038-1041.	2.3	15
107	Complexation of Linear DNA and Poly(styrenesulfonate) with Cationic Copolymer Micelles: Effect of Polyanion Flexibility. Journal of Physical Chemistry B, 2017, 121, 6708-6720.	1.2	15
108	Properties of Chemically Cross-Linked Methylcellulose Gels. Macromolecules, 2019, 52, 7740-7748.	2.2	15

#	Article	IF	CITATIONS
109	Glycopolycation–DNA Polyplex Formulation N/P Ratio Affects Stability, Hemocompatibility, and in Vivo Biodistribution. Biomacromolecules, 2019, 20, 1530-1544.	2.6	14
110	Optimization of film over nanosphere substrate fabrication for SERS sensing of the allergen soybean agglutinin. Journal of Raman Spectroscopy, 2021, 52, 482-490.	1.2	14
111	Gene Delivery with Novel Poly(l-tartaramidoamine)s. ACS Symposium Series, 2006, , 217-227.	0.5	13
112	Polyplexes Are Endocytosed by and Trafficked within Filopodia. Biomacromolecules, 2020, 21, 1379-1392.	2.6	13
113	Mechanism of Initiation Stereocontrol in Polymerization of <i>rac</i> -Lactide by Aluminum Complexes Supported by Indolide–Imine Ligands. Macromolecules, 2020, 53, 1809-1818.	2.2	13
114	Stereoregular functionalized polysaccharides <i>via</i> cationic ring-opening polymerization of biomass-derived levoglucosan. Chemical Science, 2022, 13, 4512-4522.	3.7	13
115	Polymeric Nanocylinders by Combining Block Copolymer Self-Assembly and Nanoskiving. ACS Applied Materials & Interfaces, 2014, 6, 16283-16288.	4.0	12
116	Lanthanide-Containing Polycations for Monitoring Polyplex Dynamics via Lanthanide Resonance Energy Transfer. Biomacromolecules, 2014, 15, 1612-1624.	2.6	12
117	Complexation between DNA and Hydrophilic-Cationic Diblock Copolymers. Journal of Physical Chemistry B, 2017, 121, 2230-2243.	1.2	12
118	Equilibration of Micelle–Polyelectrolyte Complexes: Mechanistic Differences between Static and Annealed Charge Distributions. Journal of Physical Chemistry B, 2017, 121, 4631-4641.	1.2	12
119	Structures and Protonation States of Hydrophilic–Cationic Diblock Copolymers and Their Binding with Plasmid DNA. Journal of Physical Chemistry B, 2018, 122, 2449-2461.	1.2	12
120	Immunological Properties of Protein–Polymer Nanoparticles. ACS Applied Bio Materials, 2019, 2, 93-103.	2.3	12
121	A Polycation Scaffold Presenting Tunable "Click―Sites: Conjugation to Carbohydrate Ligands and Examination of Hepatocyteâ€Targeted pDNA Delivery. Macromolecular Bioscience, 2010, 10, 585-598.	2.1	11
122	Lipophilic Polycation Vehicles Display High Plasmid DNA Delivery to Multiple Cell Types. Bioconjugate Chemistry, 2017, 28, 2035-2040.	1.8	11
123	Multifunctional Cascade Catalysis of Itaconic Acid Hydrodeoxygenation to 3-Methyl-tetrahydrofuran. ACS Sustainable Chemistry and Engineering, 2018, 6, 9394-9402.	3.2	11
124	Ternary Composite Nanofibers Containing Chondroitin Sulfate Scavenge Inflammatory Chemokines from Solution and Prohibit Squamous Cell Carcinoma Migration. ACS Applied Bio Materials, 2019, 2, 619-624.	2.3	11
125	Molecular Additives Significantly Enhance Glycopolymer-Mediated Transfection of Large Plasmids and Functional CRISPR-Cas9 Transcription Activation Ex Vivo in Primary Human Fibroblasts and Induced Pluripotent Stem Cells. Bioconjugate Chemistry, 2019, 30, 418-431.	1.8	11
126	Effects of Hydrophobic Tail Length Variation on Surfactant-Mediated Protein Stabilization. Molecular Pharmaceutics, 2020, 17, 4302-4311.	2.3	10

#	Article	IF	CITATIONS
127	Multiplex surface-enhanced Raman scattering detection of deoxynivalenol and ochratoxin A with a linear polymer affinity agent. Materials Advances, 2020, 1, 3256-3266.	2.6	10
128	Degradable polyanhydride networks derived from itaconic acid. Polymer Chemistry, 2021, 12, 608-617.	1.9	10
129	Fast, Efficient, and Gentle Transfection of Human Adherent Cells in Suspension. ACS Applied Materials & Interfaces, 2016, 8, 8870-8874.	4.0	9
130	Diblock Terpolymers Are Tunable and pH Responsive Vehicles To Increase Hydrophobic Drug Solubility for Oral Administration. Molecular Pharmaceutics, 2017, 14, 4121-4127.	2.3	9
131	From Order to Disorder: Computational Design of Triblock Amphiphiles with 1 nm Domains. Journal of the American Chemical Society, 2020, 142, 9352-9362.	6.6	9
132	Regioregular Polymers from Biobased (<i>R</i>)-1,3-Butylene Carbonate. Macromolecules, 2021, 54, 5974-5984.	2.2	9
133	Cation Bulk and p <i>K</i> _a Modulate Diblock Polymer Micelle Binding to pDNA. ACS Macro Letters, 2022, 11, 588-594.	2.3	7
134	Trehalose-functionalized block copolymers form serum-stable micelles. Polymer Chemistry, 2014, 5, 5160-5167.	1.9	6
135	A theranostic polycation containing trehalose and lanthanide chelate domains for siRNA delivery and monitoring. RSC Advances, 2015, 5, 74102-74106.	1.7	6
136	Synthesis of Isohexide Diyne Polymers and Hydrogenation to Their Saturated Polyethers. ACS Macro Letters, 2021, 10, 1068-1072.	2.3	6
137	Structural Basis for the Different Mechanical Behaviors of Two Chemically Analogous, Carbohydrate-Derived Thermosets. ACS Macro Letters, 2021, 10, 609-615.	2.3	5
138	Ring opening polymerization of β-acetoxy-β-methylvalerolactone, a triacetic acid lactone derivative. Polymer Chemistry, 2021, 12, 6724-6730.	1.9	5
139	Facile synthesis of GalNAc monomers and block polycations for hepatocyte gene delivery. Polymer Chemistry, 2021, 12, 4063-4071.	1.9	4
140	Aggregated Solution Morphology of Poly(acrylic acid)–Poly(styrene) Block Copolymers Improves Drug Supersaturation Maintenance and Caco-2 Cell Membrane Permeation. Molecular Pharmaceutics, 2019, 16, 4423-4435.	2.3	3
141	Exploring Divergent Green Reaction Media for the Copolymerization of Biobased Monomers in the Teaching Laboratory. Journal of Chemical Education, 2021, 98, 559-566.	1.1	3
142	Nonâ€viral delivery of therapeutic nucleic acids to investigate the role of transcriptional networks in the ischemic heart. FASEB Journal, 2008, 22, 1130.11.	0.2	0