Ding Xiang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9667691/publications.pdf

Version: 2024-02-01

279798 345221 2,896 37 23 36 citations h-index g-index papers 37 37 37 5548 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Human Coronavirus: Host-Pathogen Interaction. Annual Review of Microbiology, 2019, 73, 529-557.	7.3	777
2	Human Coronaviruses: A Review of Virus–Host Interactions. Diseases (Basel, Switzerland), 2016, 4, 26.	2.5	474
3	Post-translational modifications of coronavirus proteins: roles and function. Future Virology, 2018, 13, 405-430.	1.8	191
4	Proteolytic Activation of the Spike Protein at a Novel RRRR/S Motif Is Implicated in Furin-Dependent Entry, Syncytium Formation, and Infectivity of Coronavirus Infectious Bronchitis Virus in Cultured Cells. Journal of Virology, 2009, 83, 8744-8758.	3.4	136
5	Upregulation of CHOP/GADD153 during Coronavirus Infectious Bronchitis Virus Infection Modulates Apoptosis by Restricting Activation of the Extracellular Signal-Regulated Kinase Pathway. Journal of Virology, 2013, 87, 8124-8134.	3.4	104
6	The Endoplasmic Reticulum Stress Sensor IRE1α Protects Cells from Apoptosis Induced by the Coronavirus Infectious Bronchitis Virus. Journal of Virology, 2014, 88, 12752-12764.	3.4	101
7	Coronavirus-induced ER stress response and its involvement in regulation of coronavirus–host interactions. Virus Research, 2014, 194, 110-123.	2.2	98
8	Cell cycle arrest and apoptosis induced by the coronavirus infectious bronchitis virus in the absence of p53. Virology, 2007, 365, 435-445.	2.4	90
9	Accessory proteins 8b and 8ab of severe acute respiratory syndrome coronavirus suppress the interferon signaling pathway by mediating ubiquitin-dependent rapid degradation of interferon regulatory factor 3. Virology, 2018, 515, 165-175.	2.4	88
10	Inhibition of Protein Kinase R Activation and Upregulation of GADD34 Expression Play a Synergistic Role in Facilitating Coronavirus Replication by Maintaining De Novo Protein Synthesis in Virus-Infected Cells. Journal of Virology, 2009, 83, 12462-12472.	3.4	85
11	Coronavirus Infection Induces DNA Replication Stress Partly through Interaction of Its Nonstructural Protein 13 with the p125 Subunit of DNA Polymerase δ. Journal of Biological Chemistry, 2011, 286, 39546-39559.	3.4	81
12	Regulation of Stress Responses and Translational Control by Coronavirus. Viruses, 2016, 8, 184.	3.3	69
13	The ER stress sensor IRE1 and MAP kinase ERK modulate autophagy induction in cells infected with coronavirus infectious bronchitis virus. Virology, 2019, 533, 34-44.	2.4	54
14	Identification of N-linked glycosylation sites in the spike protein and their functional impact on the replication and infectivity of coronavirus infectious bronchitis virus in cell culture. Virology, 2018, 513, 65-74.	2.4	53
15	Similarities and Dissimilarities of COVID-19 and Other Coronavirus Diseases. Annual Review of Microbiology, 2021, 75, 19-47.	7.3	52
16	Regulation of the p38 mitogen-activated protein kinase and dual-specificity phosphatase 1 feedback loop modulates the induction of interleukin 6 and 8 in cells infected with coronavirus infectious bronchitis virus. Virology, 2011, 420, 106-116.	2.4	50
17	Interaction of the Coronavirus Infectious Bronchitis Virus Membrane Protein with β-Actin and Its Implication in Virion Assembly and Budding. PLoS ONE, 2009, 4, e4908.	2.5	49
18	Activation of the c-Jun NH2-terminal kinase pathway by coronavirus infectious bronchitis virus promotes apoptosis independently of c-Jun. Cell Death and Disease, 2017, 8, 3215.	6.3	45

#	Article	IF	CITATIONS
19	Regulation of the ER Stress Response by the Ion Channel Activity of the Infectious Bronchitis Coronavirus Envelope Protein Modulates Virion Release, Apoptosis, Viral Fitness, and Pathogenesis. Frontiers in Microbiology, 2020, 10, 3022.	3.5	45
20	Gene expression profiling by microarray analysis reveals an important role for caspaseâ€l in dengue virusâ€induced p53â€mediated apoptosis. Journal of Medical Virology, 2009, 81, 1069-1081.	5.0	43
21	Up-Regulation of Mcl-1 and Bak by Coronavirus Infection of Human, Avian and Animal Cells Modulates Apoptosis and Viral Replication. PLoS ONE, 2012, 7, e30191.	2.5	36
22	Channel-Inactivating Mutations and Their Revertant Mutants in the Envelope Protein of Infectious Bronchitis Virus. Journal of Virology, 2017, 91, .	3.4	27
23	Coronavirus infectious bronchitis virus non-structural proteins 8 and 12 form stable complex independent of the non-translated regions of viral RNA and other viral proteins. Virology, 2018, 513, 75-84.	2.4	25
24	N-Linked glycosylation of the membrane protein ectodomain regulates infectious bronchitis virus-induced ER stress response, apoptosis and pathogenesis. Virology, 2019, 531, 48-56.	2.4	25
25	Induction of the Proinflammatory Chemokine Interleukin-8 Is Regulated by Integrated Stress Response and AP-1 Family Proteins Activated during Coronavirus Infection. International Journal of Molecular Sciences, 2021, 22, 5646.	4.1	18
26	Biochemical and antigenic characterization of the structural proteins and their post-translational modifications in purified SARS-CoV-2 virions of an inactivated vaccine candidate. Emerging Microbes and Infections, 2020, 9, 2653-2662.	6.5	17
27	A Gammacoronavirus, Avian Infectious Bronchitis Virus, and an Alphacoronavirus, Porcine Epidemic Diarrhea Virus, Exploit a Cell Survival Strategy by Upregulating cFOS To Promote Virus Replication. Journal of Virology, 2021, 95, .	3.4	15
28	Transcriptomic Analysis and Functional Characterization Reveal the Duck Interferon Regulatory Factor 1 as an Important Restriction Factor in the Replication of Tembusu Virus. Frontiers in Microbiology, 2020, 11, 2069.	3.5	8
29	Development of HiBiT-Tagged Recombinant Infectious Bronchitis Coronavirus for Efficient in vitro and in vivo Viral Quantification. Frontiers in Microbiology, 2020, 11, 2100.	3.5	8
30	Modulation of viral replication, apoptosis and antiviral response by induction and mutual regulation of EGR and AP-1 family genes during coronavirus infection. Emerging Microbes and Infections, 2022, 11, 1717-1729.	6.5	7
31	Research progress in the development of porcine reproductive and respiratory syndrome virus as a viral vector for foreign gene expression and delivery. Expert Review of Vaccines, 2020, 19, 1041-1051.	4.4	6
32	Avian IRF1 and IRF7 Play Overlapping and Distinct Roles in Regulating IFN-Dependent and -Independent Antiviral Responses to Duck Tembusu Virus Infection. Viruses, 2022, 14, 1506.	3.3	6
33	Rapid Development of an Effective Newcastle Disease Virus Vaccine Candidate by Attenuation of a Genotype VII Velogenic Isolate Using a Simple Infectious Cloning System. Frontiers in Veterinary Science, 2020, 7, 648.	2.2	4
34	Identification and formation mechanism of a novel noncoding RNA produced by avian infectious bronchitis virus. Virology, 2019, 528, 176-180.	2.4	3
35	Activation of the MKK3-p38-MK2-ZFP36 Axis by Coronavirus Infection Restricts the Upregulation of AU-Rich Element-Containing Transcripts in Proinflammatory Responses. Journal of Virology, 2022, 96, jvi0208621.	3.4	3
36	Infectious Bronchitis Virus., 2019,,.		2

#	Article	IF	CITATIONS
37	The Methyltransferase Hemk Regulates the Virulence and Nutrient Utilization of the Phytopathogenic Bacterium Xanthomonas citri Subsp. citri. International Journal of Molecular Sciences, 2022, 23, 3931.	4.1	1