
Meiling Dou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9667130/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biomass-derived mesopore-dominant porous carbons with large specific surface area and high defect density as high performance electrode materials for Li-ion batteries and supercapacitors. Nano Energy, 2017, 36, 322-330.	16.0	469
2	Potassium compound-assistant synthesis of multi-heteroatom doped ultrathin porous carbon nanosheets for high performance supercapacitors. Nano Energy, 2018, 51, 366-372.	16.0	289
3	Metal–Organicâ€Frameworkâ€Derived Co ₂ P Nanoparticle/Multiâ€Doped Porous Carbon as a Trifunctional Electrocatalyst. Advanced Materials, 2020, 32, e2003649.	21.0	261
4	Porous carbon electrodes with battery-capacitive storage features for high performance Li-ion capacitors. Energy Storage Materials, 2018, 12, 145-152.	18.0	174
5	Biomass-derived nitrogen-doped porous carbons with tailored hierarchical porosity and high specific surface area for high energy and power density supercapacitors. Applied Surface Science, 2018, 427, 807-813.	6.1	167
6	A Facile Route to Bimetal and Nitrogen odoped 3D Porous Graphitic Carbon Networks for Efficient Oxygen Reduction. Small, 2016, 12, 4193-4199.	10.0	150
7	Tremella-like N,O-codoped hierarchically porous carbon nanosheets as high-performance anode materials for high energy and ultrafast Na-ion capacitors. Nano Energy, 2017, 41, 285-292.	16.0	149
8	Nitrogen and oxygen co-doped carbon networks with a mesopore-dominant hierarchical porosity for high energy and power density supercapacitors. Electrochimica Acta, 2017, 238, 310-318.	5.2	139
9	Twoâ€Dimensional Conjugated Aromatic Networks as High‣iteâ€Density and Singleâ€Atom Electrocatalysts for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2019, 58, 14724-14730.	13.8	139
10	Biomass Derived N-Doped Porous Carbon Supported Single Fe Atoms as Superior Electrocatalysts for Oxygen Reduction. Small, 2017, 13, 1604290.	10.0	132
11	One-Step Conversion from Core–Shell Metal–Organic Framework Materials to Cobalt and Nitrogen Codoped Carbon Nanopolyhedra with Hierarchically Porous Structure for Highly Efficient Oxygen Reduction. ACS Applied Materials & Interfaces, 2017, 9, 16109-16116.	8.0	117
12	Selective Loading of Atomic Platinum on a RuCeO _{<i>x</i>} Support Enables Stable Hydrogen Evolution at High Current Densities. Angewandte Chemie - International Edition, 2020, 59, 20423-20427.	13.8	112
13	Nitrogen and Phosphorus Codoped Mesoporous Carbon Derived from Polypyrrole as Superior Metal-Free Electrocatalyst toward the Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2017, 9, 16236-16242.	8.0	105
14	Sustainable Carbonaceous Materials Derived from Biomass as Metalâ€Free Electrocatalysts. Advanced Materials, 2019, 31, e1805718.	21.0	102
15	Hydrothermal Synthesis of Highly Dispersed Co ₃ O ₄ Nanoparticles on Biomass-Derived Nitrogen-Doped Hierarchically Porous Carbon Networks as an Efficient Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions. ACS Applied Materials & Interfaces, 2017, 9, 30662-30669.	8.0	99
16	Twoâ€Dimensional Conjugated Aromatic Networks as Highâ€Siteâ€Density and Singleâ€Atom Electrocatalysts for the Oxygen Reduction Reaction. Angewandte Chemie, 2019, 131, 14866-14872.	2.0	95
17	Nitrogen and phosphorus co-doped hierarchically porous carbons derived from cattle bones as efficient metal-free electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2017, 5, 24329-24334.	10.3	94
18	Porous Carbons Derived from Collagenâ€Enriched Biomass: Tailored Design, Synthesis, and Application in Electrochemical Energy Storage and Conversion. Advanced Functional Materials, 2019, 29, 1905095.	14.9	94

MEILING DOU

#	Article	IF	CITATIONS
19	A facile and versatile strategy towards high-performance Si anodes for Li-ion capacitors: Concomitant conductive network construction and dual-interfacial engineering. Nano Energy, 2019, 63, 103824.	16.0	94
20	Mesopore- and Macropore-Dominant Nitrogen-Doped Hierarchically Porous Carbons for High-Energy and Ultrafast Supercapacitors in Non-Aqueous Electrolytes. ACS Applied Materials & Interfaces, 2017, 9, 42797-42805.	8.0	92
21	Well-defined gradient Fe/Zn bimetal organic framework cylinders derived highly efficient iron- and nitrogen- codoped hierarchically porous carbon electrocatalysts towards oxygen reduction. Nano Energy, 2019, 57, 108-117.	16.0	89
22	Systematic study of transition-metal (Fe, Co, Ni, Cu) phthalocyanines as electrocatalysts for oxygen reduction and their evaluation by DFT. RSC Advances, 2016, 6, 67049-67056.	3.6	86
23	Edge-Functionalized Polyphthalocyanine Networks with High Oxygen Reduction Reaction Activity. Journal of the American Chemical Society, 2020, 142, 17524-17530.	13.7	75
24	Highly Dispersed and Crystalline Ta ₂ O ₅ Anchored Pt Electrocatalyst with Improved Activity and Durability Toward Oxygen Reduction: Promotion by Atomic-Scale Pt–Ta ₂ O ₅ Interactions. ACS Catalysis, 2019, 9, 3278-3288.	11.2	63
25	Fe–N _x moiety-modified hierarchically porous carbons derived from porphyra for highly effective oxygen reduction reaction. Journal of Materials Chemistry A, 2017, 5, 1526-1532.	10.3	60
26	Prussian blue nanocubes decorated on nitrogen-doped hierarchically porous carbon network for efficient sorption of radioactive cesium. Journal of Hazardous Materials, 2020, 385, 121568.	12.4	50
27	Heteroatom-doped carbon networks enabling robust and flexible silicon anodes for high energy Li-ion batteries. Journal of Materials Chemistry A, 2020, 8, 18338-18347.	10.3	47
28	Pyrolysis of Animal Bones with Vitamin B12: A Facile Route to Efficient Transition Metal–Nitrogen–Carbon (TMâ€ <i>N</i>) Electrocatalysts for Oxygen Reduction. Chemistry - A European Journal, 2016, 22, 2896-2901.	3.3	45
29	Porous carbons with tailored heteroatom doping and well-defined porosity as high-performance electrodes for robust Na-ion capacitors. Journal of Power Sources, 2019, 414, 68-75.	7.8	45
30	Pt/WO3/C nanocomposite with parallel WO3 nanorods as cathode catalyst for proton exchange membrane fuel cells. Journal of Energy Chemistry, 2015, 24, 39-44.	12.9	36
31	Composition-Dependent Electrocatalytic Activity of Palladium–Iridium Binary Alloy Nanoparticles Supported on the Multiwalled Carbon Nanotubes for the Electro-Oxidation of Formic Acid. ACS Applied Materials & Interfaces, 2015, 7, 15223-15229.	8.0	34
32	Biomass-derived nitrogen-doped hierarchically porous carbon networks as efficient absorbents for phenol removal from wastewater over a wide pH range. RSC Advances, 2017, 7, 46629-46635.	3.6	33
33	Sustainable Synthesis of Biomass-Derived Carbon Electrodes with Hybrid Energy-Storage Behaviors for Use in High-Performance Na-Ion Capacitors. ACS Applied Energy Materials, 2020, 3, 2478-2489.	5.1	33
34	Out-of-plane Fe ^{II} –N ₄ moiety modified Fe–N co-doped porous carbons as high-performance electrocatalysts for the oxygen reduction reaction. Catalysis Science and Technology, 2017, 7, 4017-4023.	4.1	32
35	Micropore-confined amorphous SnO ₂ subnanoclusters as robust anode materials for Na-ion capacitors. Journal of Materials Chemistry A, 2019, 7, 21711-21721.	10.3	32
36	Phase Segregated Pt–SnO ₂ /C Nanohybrids for Highly Efficient Oxygen Reduction Electrocatalysis. Small, 2020, 16, e2005048.	10.0	32

MEILING DOU

#	Article	IF	CITATIONS
37	One-pot synthesis of MoS ₂ /WS ₂ ultrathin nanoflakes with vertically aligned structure on indium tin oxide as a photocathode for enhanced photo-assistant electrochemical hydrogen evolution reaction. RSC Advances, 2017, 7, 49309-49319.	3.6	29
38	Enhancement mechanism of sulfur dopants on the catalytic activity of N and P co-doped three-dimensional hierarchically porous carbon as a metal-free oxygen reduction electrocatalyst. Catalysis Science and Technology, 2019, 9, 5906-5914.	4.1	28
39	Selective Loading of Atomic Platinum on a RuCeO _{<i>x</i>} Support Enables Stable Hydrogen Evolution at High Current Densities. Angewandte Chemie, 2020, 132, 20603-20607.	2.0	28
40	Ordered intermetallic PtFe@Pt core–shell nanoparticles supported on carbon nanotubes with superior activity and durability as oxygen reduction reaction electrocatalysts. RSC Advances, 2015, 5, 66471-66475.	3.6	26
41	Synthesis and Characterization of Co ₃ O ₄ /Multiwalled Carbon Nanotubes Nanocomposite for Amperometric Sensing of Hydrazine. Electroanalysis, 2015, 27, 1188-1194.	2.9	26
42	Towards Highâ€Performance Electrocatalysts for Oxygen Reduction: Inducing Atomic‣evel Reconstruction of Feâ€N _{<i>x</i>} Site for Atomically Dispersed Fe/Nâ€Doped Hierarchically Porous Carbon. Chemistry - A European Journal, 2018, 24, 8848-8856.	3.3	25
43	Surface Engineering of Carbon-Supported Platinum as a Route to Electrocatalysts with Superior Durability and Activity for PEMFC Cathodes. ACS Applied Materials & Interfaces, 2022, 14, 5287-5297.	8.0	24
44	Low-loading Pt nanoparticles embedded on Ni, N-doped carbon as superior electrocatalysts for oxygen reduction. Catalysis Science and Technology, 2020, 10, 65-69.	4.1	23
45	One-step preparation of N-doped graphitic layer-encased cobalt/iron carbide nanoparticles derived from cross-linked polyphthalocyanines as highly active electrocatalysts towards the oxygen reduction reaction. Catalysis Science and Technology, 2017, 7, 1529-1536.	4.1	18
46	Mesoporous NiO nanosphere: a sensitive strain sensor for determination of hydrogen peroxide. RSC Advances, 2018, 8, 13401-13407.	3.6	17
47	Photochemically activated atomic ruthenium supported on boron-doped carbon as a robust electrocatalyst for hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 16669-16675.	10.3	14
48	Construction of three-dimensional cobalt sulfide/multi-heteroatom co-doped porous carbon as an efficient trifunctional electrocatalyst. Nanoscale, 2022, 14, 9849-9859.	5.6	14
49	Stabilization of Pt nanoparticles at the Ta ₂ O ₅ –TaC binary junction: an effective strategy to achieve high durability for oxygen reduction. Journal of Materials Chemistry A, 2020, 8, 5525-5534.	10.3	12
50	Preparation of Cu2ZnSnS4 thin films with high carrier concentration and high carrier mobility by optimized annealing. Journal of Materials Science: Materials in Electronics, 2018, 29, 7613-7620.	2.2	11
51	Ice/Saltâ€Assisted Synthesis of Ultrathin Twoâ€Dimensional Micro/Mesoporous Iron and Nitrogen Coâ€Doped Carbon as an Efficient Electrocatalyst for Oxygen Reduction. Chemistry - A European Journal, 2019, 25, 5768-5776.	3.3	11
52	Understanding of Correlation between Electronic Properties and Sulfur Tolerance of Pt-Based Catalysts for Hydrogen Oxidation. ACS Applied Materials & Interfaces, 2022, 14, 7768-7778.	8.0	10
53	Improved Chloride Tolerance of PtCo/C with a Pt-Skin Structure toward the Oxygen Reduction Reaction Due to a Weakened Pt–Cl Interaction. ACS Applied Energy Materials, 2022, 5, 7503-7514.	5.1	9
54	Promotion of hydrogen evolution catalysis by ordered hierarchically porous electrodes. Catalysis Science and Technology, 2021, 11, 2997-3001.	4.1	8

MEILING DOU

#	Article	IF	CITATIONS
55	Gelatinâ€Đerived 1D Carbon Nanofiber Architecture with Simultaneous Decoration of Single Feâ^N _{<i>x</i>} Sites and Fe/Fe ₃ C Nanoparticles for Efficient Oxygen Reduction. Chemistry - A European Journal, 2021, 27, 10987-10997.	3.3	8
56	Properties of nanostructured pure \hat{l}^2 -In2S3 thin films prepared by sulfurization-assisted electrodeposition. Journal of Materials Science: Materials in Electronics, 2017, 28, 5044-5052.	2.2	6
57	Degradation Investigation of Electrocatalyst in Proton Exchange Membrane Fuel Cell at a High Energy Efficiency. Molecules, 2021, 26, 3932.	3.8	6
58	Biomass-Derived Ternary-Doped Porous Carbon Electrodes for Li-Ion Capacitors: Rational Preparation and Energy-Storage Mechanism Study. Journal of the Electrochemical Society, 2021, 168, 040521.	2.9	4
59	Bimetal Organic Framework Derived Atomically Dispersed Mn and N Codoped Porous Carbon for Efficient Oxygen Reduction. European Journal of Inorganic Chemistry, 2021, 2021, 4452-4457.	2.0	4
60	Conductive bimetal organic framework nanorods decorated with highly dispersed Co ₃ O ₄ nanoparticles as bi-functional electrocatalyst. Nanotechnology, 2022, 33, 145601.	2.6	4
61	V–P–O compound encapsulated palladium nanoparticles supported on carbon nanotubes as a methanol-tolerant oxygen reduction electrocatalyst. RSC Advances, 2016, 6, 30154-30159.	3.6	2

Collagenâ€Derived Porous Carbons: Porous Carbons Derived from Collagenâ€Enriched Biomass: Tailored Design, Synthesis, and Application in Electrochemical Energy Storage and Conversion (Adv. Funct.) Tj ETQq0 0 0 rgBT.¢Overlœk 10 Tf 50 62