Guojun Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/966664/publications.pdf

Version: 2024-02-01

		331259	552369
27	1,277	21	26
papers	citations	h-index	g-index
30	30	30	1428
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Understanding the Relationship between Catalytic Activity and Termination in photoATRP: Synthesis of Linear and Bottlebrush Polyacrylates. Macromolecules, 2020, 53, 59-67.	2.2	31
2	Degradable celluloseâ€based polymer brushes with controlled grafting densities. Journal of Polymer Science Part A, 2019, 57, 2426-2435.	2.5	16
3	Synergy between Zwitterionic Polymers and Hyaluronic Acid Enhances Antifouling Performance. Langmuir, 2019, 35, 15535-15542.	1.6	34
4	Frontispiz: Biomimetic Bottlebrush Polymer Coatings for Fabrication of Ultralow Fouling Surfaces. Angewandte Chemie, 2019, 131, .	1.6	3
5	Fabrication of Porous Nanonetwork-Structured Carbons from Well-Defined Cylindrical Molecular Bottlebrushes. ACS Applied Materials & Samp; Interfaces, 2019, 11, 18763-18769.	4.0	11
6	Frontispiece: Biomimetic Bottlebrush Polymer Coatings for Fabrication of Ultralow Fouling Surfaces. Angewandte Chemie - International Edition, 2019, 58, .	7.2	0
7	Biomimetic Bottlebrush Polymer Coatings for Fabrication of Ultralow Fouling Surfaces. Angewandte Chemie, 2019, 131, 1322-1328.	1.6	25
8	Biomimetic Bottlebrush Polymer Coatings for Fabrication of Ultralow Fouling Surfaces. Angewandte Chemie - International Edition, 2019, 58, 1308-1314.	7.2	81
9	Lubrication and Wear Protection of Micro-Structured Hydrogels Using Bioinspired Fluids. Biomacromolecules, 2019, 20, 326-335.	2.6	10
10	Molecular Bottlebrushes as Novel Materials. Biomacromolecules, 2019, 20, 27-54.	2.6	230
11	Fabrication of Porous Functional Nanonetwork-Structured Polymers with Enhanced Adsorption Performance from Well-Defined Molecular Brush Building Blocks. Chemistry of Materials, 2018, 30, 8624-8629.	3.2	13
12	Universality of the Entanglement Plateau Modulus of Comb and Bottlebrush Polymer Melts. Macromolecules, 2018, 51, 10028-10039.	2.2	61
13	Intermolecular Interactions between Bottlebrush Polymers Boost the Protection of Surfaces against Frictional Wear. Chemistry of Materials, 2018, 30, 4140-4149.	3.2	41
14	Benefits of Catalyzed Radical Termination: High-Yield Synthesis of Polyacrylate Molecular Bottlebrushes without Gelation. Macromolecules, 2018, 51, 6218-6225.	2.2	24
15	Wear Protection without Surface Modification Using a Synergistic Mixture of Molecular Brushes and Linear Polymers. ACS Nano, 2017, 11, 1762-1769.	7. 3	58
16	Bottlebrush-Guided Polymer Crystallization Resulting in Supersoft and Reversibly Moldable Physical Networks. Macromolecules, 2017, 50, 2103-2111.	2.2	38
17	Temporal Control in Mechanically Controlled Atom Transfer Radical Polymerization Using Low ppm of Cu Catalyst. ACS Macro Letters, 2017, 6, 546-549.	2.3	135
18	Mesoporous nitrogen-doped carbons from PAN-based molecular bottlebrushes. Polymer, 2017, 126, 352-359.	1.8	28

Guojun Xie

#	Article	IF	CITATION
19	Heterografted Molecular Brushes as Stabilizers for Water-in-Oil Emulsions. Macromolecules, 2017, 50, 2942-2950.	2.2	71
20	Unraveling the Correlations between Conformation, Lubrication, and Chemical Stability of Bottlebrush Polymers at Interfaces. Biomacromolecules, 2017, 18, 4002-4010.	2.6	25
21	Preparation of titania nanoparticles with tunable anisotropy and branched structures from core–shell molecular bottlebrushes. Polymer, 2016, 98, 481-486.	1.8	32
22	Preparation of ZnO hybrid nanoparticles by ATRP. Polymer, 2016, 107, 492-502.	1.8	30
23	Controlled Preparation of Well-Defined Mesoporous Carbon/Polymer Hybrids via Surface-Initiated ICAR ATRP with a High Dilution Strategy Assisted by Facile Polydopamine Chemistry. Macromolecules, 2016, 49, 8943-8950.	2.2	25
24	Polymerization-Induced Self-Assembly (PISA) Using ICAR ATRP at Low Catalyst Concentration. Macromolecules, 2016, 49, 8605-8615.	2.2	134
25	Matrix-free Particle Brush System with Bimodal Molecular Weight Distribution Prepared by SI-ATRP. Macromolecules, 2015, 48, 8208-8218.	2.2	63
26	Zn(II)- or Rh(I)-Catalyzed Rearrangement of Silylated [1,1′-Bi(cyclopropan)]-2′-en-1-ols. Journal of Organic Chemistry, 2014, 79, 6286-6293.	1.7	24
27	Pd-Catalyzed ring-opening cross-coupling of cyclopropenes with aryl iodides. Chemical Communications, 2014, 50, 8050-8052.	2.2	32