Zhiliang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9665797/publications.pdf

Version: 2024-02-01

17	505	759233	888059
17	595	12	17
papers	citations	h-index	g-index
17	17	17	858
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Interfacial Covalent Bonding Endowing Ti ₃ C ₂ â€Sb ₂ S ₃ Composites High Sodium Storage Performance. Small, 2022, 18, e2104293.	10.0	30
2	The design and synthesis of Fe doped flower-like NiS/NiS2 catalyst with enhanced oxygen evolution reaction. Journal of Electroanalytical Chemistry, 2022, 920, 116630.	3.8	10
3	An efficient and stable MnCo@NiS catalyst for oxygen evolution reaction constructed by a step-by-step electrodeposition way. Journal of Power Sources, 2021, 489, 229525.	7.8	13
4	The cutting-edge phosphorus-rich metal phosphides for energy storage and conversion. Nano Today, 2021, 40, 101245.	11.9	39
5	The emerging applications of metal phosphides in carbon dioxide reduction reaction. Functional Materials Letters, 2021, 14, .	1.2	3
6	Lowâ€Temperature Synthesis of Honeycomb CuP ₂ @C in Molten ZnCl ₂ Salt for Highâ€Performance Lithium Ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 1975-1979.	13.8	62
7	Lowâ€Temperature Synthesis of Honeycomb CuP ₂ @C in Molten ZnCl ₂ Salt for Highâ€Performance Lithium Ion Batteries. Angewandte Chemie, 2020, 132, 1991-1995.	2.0	23
8	Direct plasma phosphorization of Cu foam for Li ion batteries. Journal of Materials Chemistry A, 2020, 8, 16920-16925.	10.3	44
9	Ultrafine Sn4P3 nanocrystals from chloride reduction on mechanically activated Na surface for sodium/lithium ion batteries. Nano Research, 2020, 13, 3157-3164.	10.4	39
10	Plasma modified BiOCl/sulfonated graphene microspheres as efficient photo-compensated electrocatalysts for the oxygen evolution reaction. Catalysis Science and Technology, 2020, 10, 4786-4793.	4.1	12
11	A high capacity nanocrystalline Sn anode for lithium ion batteries from hydrogenation induced phase segregation of bulk YSn ₂ . Journal of Materials Chemistry A, 2018, 6, 21266-21273.	10.3	8
12	A Peapodâ€like CoP@C Nanostructure from Phosphorization in a Lowâ€Temperature Molten Salt for Highâ€Performance Lithiumâ€lon Batteries. Angewandte Chemie, 2018, 130, 10344-10348.	2.0	38
13	A Peapodâ€like CoP@C Nanostructure from Phosphorization in a Lowâ€Temperature Molten Salt for Highâ€Performance Lithiumâ€lon Batteries. Angewandte Chemie - International Edition, 2018, 57, 10187-10191.	13.8	87
14	Ultrafine Sn nanocrystals in a hierarchically porous N-doped carbon for lithium ion batteries. Nano Research, 2017, 10, 1950-1958.	10.4	76
15	Room temperature solvent-free reduction of SiCl4 to nano-Si for high-performance Li-ion batteries. Chemical Communications, 2017, 53, 6223-6226.	4.1	20
16	Combining catalysis and hydrogen storage in direct borohydride fuel cells: towards more efficient energy utilization. Journal of Materials Chemistry A, 2017, 5, 14310-14318.	10.3	14
17	Silica-Derived Hydrophobic Colloidal Nano-Si for Lithium-Ion Batteries. ACS Nano, 2017, 11, 6065-6073.	14.6	77