Gary Da Costa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/966447/publications.pdf

Version: 2024-02-01

104 papers 5,811 citations

42 h-index 76900 74 g-index

104 all docs

104 docs citations

104 times ranked 3895 citing authors

#	Article	IF	Citations
1	SkyMapper Southern Survey: First Data Release (DR1). Publications of the Astronomical Society of Australia, 2018, 35, .	3.4	301
2	A single low-energy, iron-poor supernova as the source of metals in the star SMSS J031300.36â^670839.3. Nature, 2014, 506, 463-466.	27.8	298
3	The GALAH+ survey: Third data release. Monthly Notices of the Royal Astronomical Society, 2021, 506, 150-201.	4.4	293
4	The GALAH Survey: second data release. Monthly Notices of the Royal Astronomical Society, 2018, 478, 4513-4552.	4.4	269
5	The Giant Branch of omega Centauri. IV. Abundance Patterns Based on Echelle Spectra of 40 Red Giants. Astrophysical Journal, 1995, 447, 680.	4.5	269
6	Correlated cyanogen and sodium anomalies in the globular clusters 47 TUC and NGC 6752. Astrophysical Journal, 1981, 245, L79.	4.5	221
7	Abundances and Kinematics of the Globular Cluster Systems of the Galaxy and of the Sagittarius Dwarf. Astronomical Journal, 1995, 109, 2533.	4.7	204
8	AGE DETERMINATION OF SIX INTERMEDIATE-AGE SMALL MAGELLANIC CLOUD STAR CLUSTERS WITH <i>HST </i> /ACS. Astronomical Journal, 2008, 136, 1703-1727.	4.7	182
9	The abundance spread in the giants of NGC 6752. Astrophysical Journal, 1981, 244, 205.	4.5	166
10	SkyMapper Southern Survey: Second data release (DR2). Publications of the Astronomical Society of Australia, 2019, 36, .	3.4	160
11	The GALAH survey: observational overview and <i>Gaia </i> DR1 companion. Monthly Notices of the Royal Astronomical Society, 2017, 465, 3203-3219.	4.4	157
12	Metallicities for old stellar systems from CA II triplet strengths in member giants. Astronomical Journal, 1991, 101, 1329.	4.7	134
13	Iron and neutron-capture element abundance variations in the globular cluster M2 (NGC 7089)a˜ Monthly Notices of the Royal Astronomical Society, 2014, 441, 3396-3416.	4.4	119
14	M22: AN [Fe/H] ABUNDANCE RANGE REVEALED. Astrophysical Journal, 2009, 705, 1481-1491.	4.5	118
15	A HERO'S DARK HORSE: DISCOVERY OF AN ULTRA-FAINT MILKY WAY SATELLITE IN PEGASUS. Astrophysical Journal Letters, 2015, 804, L44.	8.3	112
16	HIGH-RESOLUTION SPECTROSCOPIC STUDY OF EXTREMELY METAL-POOR STAR CANDIDATES FROM THE SKYMAPPER SURVEY. Astrophysical Journal, 2015, 807, 171.	4.5	105
17	Extremely metal-poor stars from the cosmic dawn in the bulge of the Milky Way. Nature, 2015, 527, 484-487.	27.8	86
18	DISCOVERY OF A FAINT OUTER HALO MILKY WAY STAR CLUSTER IN THE SOUTHERN SKY. Astrophysical Journal, 2015, 803, 63.	4.5	79

#	Article	IF	Citations
19	The EMBLA survey $\hat{a}\in$ metal-poor stars in the Galactic bulge. Monthly Notices of the Royal Astronomical Society, 2016, 460, 884-901.	4.4	77
20	Discovery of a nearby 1700ÂkmÂsâ^'1 star ejected from the Milky Way by SgrÂA*. Monthly Notices of the Royal Astronomical Society, 2020, 491, 2465-2480.	4.4	73
21	A 10Âkpc stellar substructure at the edge of the Large Magellanic Cloud: perturbed outer disc or evidence for tidal stripping?. Monthly Notices of the Royal Astronomical Society, 2016, 459, 239-255.	4.4	72
22	The southern stellar stream spectroscopic survey (S5): Overview, target selection, data reduction, validation, and early science. Monthly Notices of the Royal Astronomical Society, 2019, 490, 3508-3531.	4.4	68
23	Multiple populations in globular clusters and their parent galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 491, 515-531.	4.4	66
24	FORS2/VLT survey of Milky Way globular clusters. Astronomy and Astrophysics, 2016, 590, A9.	5.1	62
25	The GALAH survey: the data reduction pipeline. Monthly Notices of the Royal Astronomical Society, 2017, 464, 1259-1281.	4.4	60
26	The outer envelopes of globular clusters. II. NGC 1851, NGC 5824 and NGC 1261*. Monthly Notices of the Royal Astronomical Society, 2018, 473, 2881-2898.	4.4	60
27	NUCLEOSYNTHESIS IN A PRIMORDIAL SUPERNOVA: CARBON AND OXYGEN ABUNDANCES IN SMSS J031300.36–670839.3. Astrophysical Journal Letters, 2015, 806, L16.	8.3	59
28	The lowest detected stellar Fe abundance: the halo star SMSS J160540.18â^'144323.1. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 488, L109-L113.	3.3	55
29	The Gaia-ESO Survey: the most metal-poor stars in the Galactic bulge. Monthly Notices of the Royal Astronomical Society, 2014, 445, 4241-4246.	4.4	54
30	Different Stellar Rotations in the Two Main Sequences of the Young Globular Cluster NGC 1818: The First Direct Spectroscopic Evidence [*] . Astronomical Journal, 2018, 156, 116.	4.7	53
31	The Southern Stellar Stream Spectroscopic Survey (S ⁵): Chemical Abundances of Seven Stellar Streams. Astronomical Journal, 2020, 160, 181.	4.7	53
32	Galactic Archeology with the AEGIS Survey: The Evolution of Carbon and Iron in the Galactic Halo. Astrophysical Journal, 2018, 861, 146.	4.5	52
33	The outer envelopes of globular clusters – I. NGC 7089 (M2). Monthly Notices of the Royal Astronomical Society, 2016, 461, 3639-3652.	4.4	50
34	Substructures and Tidal Distortions in the Magellanic Stellar Periphery. Astrophysical Journal Letters, 2018, 858, L21.	8.3	50
35	The SkyMapper DR1.1 search for extremely metal-poor stars. Monthly Notices of the Royal Astronomical Society, 2019, 489, 5900-5918.	4.4	49
36	STRUCTURAL PARAMETERS OF SEVEN SMALL MAGELLANIC CLOUD INTERMEDIATE-AGE AND OLD STAR CLUSTERS. Astronomical Journal, 2009, 138, 1403-1416.	4.7	48

#	Article	IF	CITATIONS
37	Broken into Pieces: ATLAS and Aliqa Uma as One Single Stream. Astrophysical Journal, 2021, 911, 149.	4.5	46
38	Palomar 5 and its tidal tails: a search for new members in the tidal stream. Monthly Notices of the Royal Astronomical Society, 2015, 446, 3297-3309.	4.4	44
39	Spectroscopy and Photometry of Multiple Populations along the Asymptotic Giant Branch of NGC 2808 and NGC 6121 (M4)*. Astrophysical Journal, 2017, 843, 66.	4.5	44
40	r-Process elements from magnetorotational hypernovae. Nature, 2021, 595, 223-226.	27.8	44
41	Measuring the Mass of the Large Magellanic Cloud with Stellar Streams Observed by S ⁵ . Astrophysical Journal, 2021, 923, 149.	4.5	44
42	A VLT/FLAMES STUDY OF THE PECULIAR INTERMEDIATE-AGE LARGE MAGELLANIC CLOUD STAR CLUSTER NGC 1846. I. KINEMATICS. Astrophysical Journal, 2013, 762, 65.	4.5	43
43	S ⁵ : The Orbital and Chemical Properties of One Dozen Stellar Streams. Astrophysical Journal, 2022, 928, 30.	4.5	43
44	Kinematics of Antlia 2 and Crater 2 from the Southern Stellar Stream Spectroscopic Survey (S) Tj ETQq0 0 0 rgBT	/Qverlock	10 Tf 50 46
45	The tidal remnant of an unusually metal-poor globular cluster. Nature, 2020, 583, 768-770.	27.8	41
46	PRESENT-DAY MASS FUNCTION OF SIX SMALL MAGELLANIC CLOUD INTERMEDIATE-AGE AND OLD STAR CLUSTERS. Astronomical Journal, 2011, 142, 36.	4.7	40
47	STELLAR SUBSTRUCTURES AROUND THE HERCULES DWARF SPHEROIDAL GALAXY. Astrophysical Journal, 2015, 804, 134.	4.5	40
48	Tidal Tails around the Outer Halo Globular Clusters Eridanus and Palomar 15. Astrophysical Journal Letters, 2017, 840, L25.	8.3	40
49	The Absence of Extratidal Structure in the Sculptor Dwarf Spheroidal Galaxy. Astronomical Journal, 2005, 130, 1065-1082.	4.7	39
50	THE GLOBULAR CLUSTER SYSTEM OF THE MILKY WAY: ACCRETION IN A COSMOLOGICAL CONTEXT. Astrophysical Journal, 2012, 744, 57.	4. 5	39
51	PORTRAIT OF A DARK HORSE: A PHOTOMETRIC AND SPECTROSCOPIC STUDY OF THE ULTRA-FAINT MILKY WAY SATELLITE PEGASUS III*. Astrophysical Journal, 2016, 833, 16.	4.5	39
52	NGC 5824: a luminous outer halo globular cluster with an intrinsic abundance spread. Monthly Notices of the Royal Astronomical Society, 2014, 438, 3507-3520.	4.4	36
53	KIM 3: AN ULTRA-FAINT STAR CLUSTER IN THE CONSTELLATION OF CENTAURUS. Astrophysical Journal, 2016, 820, 119.	4.5	36
54	The GALAH survey: properties of the Galactic disc(s) in the solar neighbourhood. Monthly Notices of the Royal Astronomical Society, 2018, 476, 5216-5232.	4.4	36

#	Article	IF	CITATIONS
55	Exploring the Galaxy's halo and very metal-weak thick disc with <i>SkyMapper</i> and <i>Gaia</i> DR2. Monthly Notices of the Royal Astronomical Society, 2021, 503, 2539-2561.	4.4	36
56	The GALAH survey: chemical tagging of star clusters and new members in the Pleiades. Monthly Notices of the Royal Astronomical Society, 2018, 473, 4612-4633.	4.4	35
57	How stellar rotation shapes the colourâ° magnitude diagram of the massive intermediate-age star cluster NGC 1846. Monthly Notices of the Royal Astronomical Society, 2020, 492, 2177-2192.	4.4	35
58	Structural analysis of the Sextans dwarf spheroidal galaxy. Monthly Notices of the Royal Astronomical Society, 2016, 460, 30-43.	4.4	33
59	Metallicity Variations in the Type II Globular Cluster NGC 6934*. Astrophysical Journal, 2018, 859, 81.	4.5	33
60	A black hole detected in the young massive LMC cluster NGC 1850. Monthly Notices of the Royal Astronomical Society, 2022, 511, 2914-2924.	4.4	32
61	The Ca ii triplet in red giant spectra: [Fe/H] determinations and the role of [Ca/Fe]. Monthly Notices of the Royal Astronomical Society, 2016, 455, 199-206.	4.4	28
62	A SPECTROSCOPIC SURVEY FOR ω CENTAURI MEMBERS AT AND BEYOND THE CLUSTER TIDAL RADIUS. Astronomical Journal, 2008, 136, 506-517.	4.7	26
63	Nucleosynthesis in the Stellar Systems ω Centauri and M22. Publications of the Astronomical Society of Australia, 2011, 28, 28-37.	3.4	26
64	The anticorrelation of cyanogen and CH on the giant branch of 47 Tucanae. Astrophysical Journal, 1984, 277, 615.	4.5	26
65	Milky Way Tomography with the SkyMapper Southern Survey. II. Photometric Recalibration of SMSS DR2. Astrophysical Journal, 2021, 907, 68.	4.5	25
66	The dynamics of the globular cluster NGCÂ3201 out to the Jacobi radius. Monthly Notices of the Royal Astronomical Society, 2021, 502, 4513-4525.	4.4	20
67	High-resolution spectroscopic follow-up of the most metal-poor candidates from SkyMapper DR1.1. Monthly Notices of the Royal Astronomical Society, 2021, 507, 4102-4119.	4.4	20
68	THE DYNAMICS OF THE OUTER PARTS OF ω CENTAURI. Astrophysical Journal, 2012, 751, 6.	4.5	19
69	Structured star formation in the Magellanic inter-Cloud region. Monthly Notices of the Royal Astronomical Society, 2017, 472, 2975-2989.	4.4	18
70	The Magellanic Edges Survey I: Description and first results. Monthly Notices of the Royal Astronomical Society, 2020, 497, 3055-3075.	4.4	18
71	Spectroscopy and Photometry of the Least Massive Type II Globular Clusters: NGC 1261 and NGC 6934*. Astrophysical Journal, 2021, 923, 22.	4.5	18
72	Extended stellar substructure surrounding the BoötesÂl dwarf spheroidal galaxy. Monthly Notices of the Royal Astronomical Society, 2016, 461, 3702-3713.	4.4	17

#	Article	IF	Citations
73	The Magellanic Edges Survey – II. Formation of the LMC's northern arm. Monthly Notices of the Royal Astronomical Society, 2021, 510, 445-468.	4.4	17
74	ABUNDANCES OF C, N, Sr, AND Ba ON THE RED GIANT BRANCH OF ω CENTAURI. Astrophysical Journal, 2010, 714, 1001-1014.	4.5	16
75	Gemini/GMOS photometry of intermediate-age star clusters in the Large Magellanic Cloud. Monthly Notices of the Royal Astronomical Society, 2014, 444, 1425-1441.	4.4	16
76	Identification of Globular Cluster Stars in RAVE data II: Extended tidal debris around NGC 3201. Monthly Notices of the Royal Astronomical Society, 2016, 457, 2078-2085.	4.4	16
77	Confirming the intrinsic abundance spread in the globular cluster NGC 6273 (M19) with calcium triplet spectroscopy. Monthly Notices of the Royal Astronomical Society, 2016, 460, 1846-1853.	4.4	15
78	The GALAH Survey: Chemically tagging the Fimbulthul stream to the globular cluster I‰ Centauri. Monthly Notices of the Royal Astronomical Society, 2020, 491, 3374-3384.	4.4	15
79	Galactic calibration of the tip of the red giant branch. Publications of the Astronomical Society of Australia, 2019, 36, .	3.4	14
80	The WAGGS project-III. Discrepant mass-to-light ratios of Galactic globular clusters at high metallicity. Monthly Notices of the Royal Astronomical Society, 2020, 492, 3859-3871.	4.4	14
81	Gaia and Hubble Unveil the Kinematics of Stellar Populations in the Type II Globular Clusters ï‰ Centauri and M22. Astrophysical Journal, 2020, 898, 147.	4.5	14
82	A Chemical Signature from Fast-rotating Low-metallicity Massive Stars: ROA 276 in ω Centauri*. Astrophysical Journal, 2017, 837, 176.	4.5	12
83	The GALAH survey: co-orbiting stars and chemical tagging. Monthly Notices of the Royal Astronomical Society, 2019, 482, 5302-5315.	4.4	12
84	The GALAH survey: accreted stars also inhabit the Spite plateau. Monthly Notices of the Royal Astronomical Society, 2021, 507, 43-54.	4.4	11
85	A Second Shell in the Fornax dSph Galaxy. Publications of the Astronomical Society of Australia, 2005, 22, 162-165.	3.4	10
86	Keck HIRES spectroscopy of SkyMapper commissioning survey candidate extremely metal-poor stars. Monthly Notices of the Royal Astronomical Society, 2019, 485, 5153-5167.	4.4	10
87	Are the globular clusters with significant internal [Fe/H] spreads all former dwarf galaxy nuclei?. Proceedings of the International Astronomical Union, 2015, 11, 110-115.	0.0	9
88	An investigation of C, N, and Na abundances in red giant stars of the Sculptor dwarf spheroidal galaxy. Monthly Notices of the Royal Astronomical Society, 2019, 484, 3093-3118.	4.4	9
89	A search for stellar structures around nine outer halo globular clusters in the Milky Way. Monthly Notices of the Royal Astronomical Society, 2022, 513, 3136-3164.	4.4	9
90	The Magellanic Edges Survey – III. Kinematics of the disturbed LMC outskirts. Monthly Notices of the Royal Astronomical Society, 2022, 512, 4798-4818.	4.4	9

#	Article	IF	CITATIONS
91	Scl-1013644: a CEMP-s star in the Sculptor dwarf spheroidal galaxy. Monthly Notices of the Royal Astronomical Society, 2016, 463, 598-603.	4.4	8
92	S ⁵ : The Destruction of a Bright Dwarf Galaxy as Revealed by the Chemistry of the Indus Stellar Stream. Astrophysical Journal, 2021, 915, 103.	4.5	8
93	The closest extremely low-mass white dwarf to the Sun. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 495, L129-L134.	3.3	6
94	The Stellar Populations of dE Galaxies in Nearby Groups. Publications of the Astronomical Society of Australia, 2004, 21, 366-370.	3.4	5
95	A panoramic view of the Local Group dwarf galaxy NGC 6822. Monthly Notices of the Royal Astronomical Society, 2021, 508, 2098-2113.	4.4	5
96	The GALAH Survey: A New Sample of Extremely Metal-poor Stars Using a Machine-learning Classification Algorithm. Astrophysical Journal, 2022, 930, 47.	4.5	5
97	Evidence of globular cluster abundance anomalies in the SMC intermediate-age cluster Kron 3. Monthly Notices of the Royal Astronomical Society, 2022, 515, 2511-2528.	4.4	4
98	Signature of a Massive Rotating Metal-poor Star Imprinted in the Phoenix Stellar Stream*. Astrophysical Journal, 2021, 921, 67.	4.5	3
99	Title is missing!. , 1999, 88, 611-612.		2
100	The Andromeda Dwarf Spheroidal Galaxies. Symposium - International Astronomical Union, 1999, 192, 203-217.	0.1	1
101	Finding RR Lyrae Stars with SkyMapper: An Observational Test. Publications of the Astronomical Society of Australia, 2013, 30, .	3.4	1
102	Summaries of Papers Presented at Joint Discussion Session 4: Astrophysical Impact of Abundances in Globular Cluster Stars. Highlights of Astronomy, 2005, 13, 147-148.	0.0	0
103	The star formation history of the Fornax dwarf spheroidal galaxy. Proceedings of the International Astronomical Union, 2009, 5, 353-354.	0.0	0
104	The GOTHAM survey: chemical evolution of Milky Way globular clusters. Proceedings of the International Astronomical Union, 2017, 13, 25-28.	0.0	0