Radim VaÅjÄjt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9663092/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Using an ensemble model coupled with portable X-ray fluorescence and visible near-infrared spectroscopy to explore the viability of mapping and estimating arsenic in an agricultural soil. Science of the Total Environment, 2022, 818, 151805.	8.0	8
2	Prediction of nickel concentration in peri-urban and urban soils using hybridized empirical bayesian kriging and support vector machine regression. Scientific Reports, 2022, 12, 3004.	3.3	11
3	Estimation of the stability of topsoil aggregates in areas affected by water erosion using selected soil and terrain properties. Soil and Tillage Research, 2022, 219, 105348.	5.6	12
4	Prediction of topsoil organic carbon content with Sentinel-2 imagery and spectroscopic measurements under different conditions using an ensemble model approach with multiple pre-treatment combinations. Soil and Tillage Research, 2022, 220, 105379.	5.6	11
5	Using spectral indices and terrain attribute datasets and their combination in the prediction of cadmium content in agricultural soil. Computers and Electronics in Agriculture, 2022, 198, 107077.	7.7	10
6	Can in situ spectral measurements under disturbance-reduced environmental conditions help improve soil organic carbon estimation?. Science of the Total Environment, 2022, 838, 156304.	8.0	7
7	Ecological risk source distribution, uncertainty analysis, and application of geographically weighted regression cokriging for prediction of potentially toxic elements in agricultural soils. Chemical Engineering Research and Design, 2022, 164, 729-746.	5.6	13
8	Source apportionment, contamination levels, and spatial prediction of potentially toxic elements in selected soils of the Czech Republic. Environmental Geochemistry and Health, 2021, 43, 601-620.	3.4	24
9	Does the limited use of orthogonal signal correction pre-treatment approach to improve the prediction accuracy of soil organic carbon need attention?. Geoderma, 2021, 388, 114945.	5.1	17
10	Health risk assessment and the application of CF-PMF: a pollution assessment–based receptor model in an urban soil. Journal of Soils and Sediments, 2021, 21, 3117-3136.	3.0	19
11	Exploring the Suitability of UAS-Based Multispectral Images for Estimating Soil Organic Carbon: Comparison with Proximal Soil Sensing and Spaceborne Imagery. Remote Sensing, 2021, 13, 308.	4.0	21
12	Multi-geochemical background comparison and the identification of the best normalizer for the estimation of PTE contamination in agricultural soil. Environmental Geochemistry and Health, 2021, , 1.	3.4	5
13	A geostatistical approach to estimating source apportionment in urban and peri-urban soils using the Czech Republic as an example. Scientific Reports, 2021, 11, 23615.	3.3	9
14	Human health risk exposure and ecological risk assessment of potentially toxic element pollution in agricultural soils in the district of Frydek Mistek, Czech Republic: a sample location approach. Environmental Sciences Europe, 2021, 33, .	5.5	19
15	Quantifying the pedodiversity-elevation relations. Geoderma, 2020, 373, 114441.	5.1	19
16	Application of regression-kriging and sequential Gaussian simulation for the delineation of forest areas potentially suitable for liming in the Jizera Mountains region, Czech Republic. Geoderma Regional, 2020, 21, e00286.	2.1	6
17	Prediction of soil texture classes through different wavelength regions of reflectance spectroscopy at various soil depths. Catena, 2020, 189, 104485.	5.0	49
18	Ensemble predictive model for more accurate soil organic carbon spectroscopic estimation. Computers and Geosciences, 2017, 104, 75-83.	4.2	24

Radim VaÅiÃit

#	Article	IF	CITATIONS
19	Combining reflectance spectroscopy and the digital elevation model for soil oxidizable carbon estimation. Geoderma, 2017, 303, 133-142.	5.1	18
20	Simple but efficient signal pre-processing in soil organic carbon spectroscopic estimation. Geoderma, 2017, 298, 46-53.	5.1	66
21	A Memory-Based Learning Approach as Compared to Other Data Mining Algorithms for the Prediction of Soil Texture Using Diffuse Reflectance Spectra. Remote Sensing, 2016, 8, 341.	4.0	44
22	Absorption Features in Soil Spectra Assessment. Applied Spectroscopy, 2015, 69, 1425-1431.	2.2	8
23	Estimation of Potentially Toxic Elements Contamination in Anthropogenic Soils on a Brown Coal Mining Dumpsite by Reflectance Spectroscopy: A Case Study. PLoS ONE, 2015, 10, e0117457.	2.5	65
24	Colluvial soils as a soil organic carbon pool in different soil regions. Geoderma, 2015, 253-254, 122-134.	5.1	35
25	Transformation of iron forms during pedogenesis after tree uprooting in a natural beech-dominated forest. Catena, 2015, 132, 12-20.	5.0	22
26	Predicting oxidizable carbon content via visible- and near-infrared diffuse reflectance spectroscopy in soils heavily affected by water erosion. Soil and Water Research, 2015, 10, 74-77.	1.7	8
27	Modelling the impact of acid deposition on forest soils in North Bohemian Mountains with two dynamic models: the Very Simple Dynamic Model (VSD) and the Model of Acidification of Groundwater in Catchments (MAGIC). Soil and Water Research, 2015, 10, 10-18.	1.7	5
28	Comparing different data preprocessing methods for monitoring soil heavy metals based on soil spectral features. Soil and Water Research, 2015, 10, 218-227.	1.7	125
29	Consideration of peak parameters derived from continuum-removed spectra to predict extractable nutrients in soils with visible and near-infrared diffuse reflectance spectroscopy (VNIR-DRS). Geoderma, 2014, 232-234, 208-218.	5.1	37
30	Uncertainty propagation in VNIR reflectance spectroscopy soil organic carbon mapping. Geoderma, 2013, 199, 54-63.	5.1	49
31	Visible, Near-Infrared, and Mid-Infrared Spectroscopy Applications for Soil Assessment with Emphasis on Soil Organic Matter Content and Quality: State-of-the-Art and Key Issues. Applied Spectroscopy, 2013, 67, 1349-1362.	2.2	139
32	Mapping the topsoil pH and humus quality of forest soils in the North Bohemian Jizerské hory Mts. region with ordinary, universal, and regression kriging: cross-validation comparison. Soil and Water Research, 2013, 8, 97-104.	1.7	11
33	Sampling design optimization for multivariate soil mapping. Geoderma, 2010, 155, 147-153.	5.1	68
34	Delineating Acidified Soils in the Jizera Mountains Region Using Fuzzy Classification. , 2008, , 303-309.		1
35	Forest soil acidification assessment using principal component analysis and geostatistics. Geoderma, 2007, 140, 374-382.	5.1	52
36	Factors influencing distribution of different Al forms in forest soils of the Jizerské hory Mts Journal of Forest Science, 2006, 52, S87-S92.	1.1	14

#	Article	IF	CITATIONS
37	Factors of spatial distribution of forest floor properties in the Jizerské Mountains. Plant, Soil and Environment, 2005, 51, 447-455.	2.2	13