Luca Settanni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/966307/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biological control of Listeria monocytogenes in soil model systems by Enterococcus mundtii strains expressing mundticin KS production. Applied Soil Ecology, 2022, 170, 104293.	4.3	2
2	Effect of grape pomace from red cultivar 'Nero d'Avola' on the microbiological, physicochemical, phenolic profile and sensory aspects of ovine Vastedda-like stretched cheese. Journal of Applied Microbiology, 2022, 133, 130-144.	3.1	11
3	Functional bread supplemented with Pleurotus eryngii powder: A potential new food for human health. International Journal of Gastronomy and Food Science, 2022, 27, 100449.	3.0	8
4	Technological screening and application of Saccharomyces cerevisiae strains isolated from fermented honey by-products for the sensory improvement of Spiritu re fascitrari, a typical Sicilian distilled beverage. Food Microbiology, 2022, 104, 103968.	4.2	6
5	A Multivariate Approach to Study the Bacterial Diversity Associated to the Wooden Shelves Used for Aging Traditional Sicilian Cheeses. Foods, 2022, 11, 774.	4.3	5
6	Application of Hydrogen Peroxide to Improve the Microbiological Stability of Food Ice Produced in Industrial Facilities. Applied Sciences (Switzerland), 2022, 12, 210.	2.5	1
7	Development of "Quadrello di Ovinoâ€ , a Novel Fresh Ewe's Cheese. Foods, 2022, 11, 25.	4.3	2
8	Chitosan Film Functionalized with Grape Seed Oil—Preliminary Evaluation of Antimicrobial Activity. Sustainability, 2022, 14, 5410.	3.2	12
9	Preliminary Investigation of Biogenic Amines in Type I Sourdoughs Produced at Home and Bakery Level. Toxins, 2022, 14, 293.	3.4	4
10	Fresh-Cut Mangoes: How to Increase Shelf Life by Using Neem Oil Edible Coating. Coatings, 2022, 12, 664.	2.6	8
11	Microbiological Analysis and Metagenomic Profiling of the Bacterial Community of an Anthropogenic Soil Modified from Typic Haploxererts. Land, 2022, 11, 748.	2.9	2
12	Use of sequentially inoculation of Saccharomyces cerevisiae and Hanseniaspora uvarum strains isolated from honey by-products to improve and stabilize the quality of mead produced in Sicily. Food Microbiology, 2022, 107, 104064.	4.2	5
13	Evaluation of the variations in chemical and microbiological properties of the sourdoughs produced with selected lactic acid bacteria strains during fermentation. Food Chemistry: X, 2022, , 100357.	4.3	8
14	Effect of different mineral salt mixtures and dough extraction procedure on the physical, chemical and microbiological composition of Åžalgam: A black carrot fermented beverage. Food Chemistry, 2021, 344, 128618.	8.2	13
15	Ecology of yeasts associated with kernels of several durum wheat genotypes and their role in co-culture with Saccharomyces cerevisiae during dough leavening. Food Microbiology, 2021, 94, 103666.	4.2	12
16	Improvement of Raw Milk Cheese Hygiene through the Selection of Starter and Non-Starter Lactic Acid Bacteria: The Successful Case of PDO Pecorino Siciliano Cheese. International Journal of Environmental Research and Public Health, 2021, 18, 1834.	2.6	17
17	Effect on the Antioxidant, Lipoperoxyl Radical Scavenger Capacity, Nutritional, Sensory and Microbiological Traits of an Ovine Stretched Cheese Produced with Grape Pomace Powder Addition. Antioxidants, 2021, 10, 306.	5.1	16
18	The Use of Winery by-Products to Enhance the Functional Aspects of the Fresh Ovine "Primosale― Cheese. Foods, 2021, 10, 461.	4.3	16

#	Article	IF	CITATIONS
19	Influence of grain quality, semolinas and baker's yeast on bread made from old landraces and modern genotypes of Sicilian durum wheat. Food Research International, 2021, 140, 110029.	6.2	30
20	Monitoring Commercial Starter Culture Development in Presence of Red Grape Pomace Powder to Produce Polyphenol-Enriched Fresh Ovine Cheeses at Industrial Scale Level. Fermentation, 2021, 7, 35.	3.0	8
21	Effect of Opuntia ficus-indica Mucilage Edible Coating in Combination with Ascorbic Acid, on Strawberry Fruit Quality during Cold Storage. Journal of Food Quality, 2021, 2021, 1-8.	2.6	14
22	Carvacrol activated biopolymeric foam: An effective packaging system to control the development of spoilage and pathogenic bacteria on sliced pumpkin and melon. Food Packaging and Shelf Life, 2021, 28, 100633.	7.5	19
23	Effects of different yeast strains, nutrients and glutathione-rich inactivated yeast addition on the aroma characteristics of Catarratto wines. International Journal of Food Microbiology, 2021, 360, 109325.	4.7	8
24	Sourdough "ciabatta―bread enriched with powdered insects: Physicochemical, microbiological, and simulated intestinal digesta functional properties. Innovative Food Science and Emerging Technologies, 2021, 72, 102755.	5.6	19
25	Effect of Opuntia ficus-indica Mucilage Edible Coating on Quality, Nutraceutical, and Sensorial Parameters of Minimally Processed Cactus Pear Fruits. Agronomy, 2021, 11, 1963.	3.0	15
26	In-Depth Investigation of the Safety of Wooden Shelves Used for Traditional Cheese Ripening. Applied and Environmental Microbiology, 2021, 87, e0152421.	3.1	12
27	Polyphasic Characterization of Microbiota of "Mastreddaâ€, a Traditional Wooden Tool Used during the Production of PDO Provola dei Nebrodi Cheese. Applied Sciences (Switzerland), 2021, 11, 8647.	2.5	7
28	Selenium bio-enrichment of Mediterranean fruit juices through lactic acid fermentation. International Journal of Food Microbiology, 2021, 354, 109248.	4.7	7
29	Non-conventional yeasts from fermented honey by-products: Focus on Hanseniaspora uvarum strains for craft beer production. Food Microbiology, 2021, 99, 103806.	4.2	28
30	Bioaccumulation of selenium-by fruit origin lactic acid bacteria in tropical fermented fruit juices. LWT - Food Science and Technology, 2021, 151, 112103.	5.2	13
31	Valorisation of Dairy Wastes Through Kefir Grain Production. Waste and Biomass Valorization, 2020, 11, 3979-3985.	3.4	8
32	Effect of addition of Opuntia ficus-indica mucilage on the biological leavening, physical, nutritional, antioxidant and sensory aspects of bread. Journal of Bioscience and Bioengineering, 2020, 129, 184-191.	2.2	34
33	Persistence of a mixed lactic acid bacterial starter culture during lysine fortification of sourdough breads by addition of pistachio powder. Food Microbiology, 2020, 86, 103349.	4.2	32
34	Evolution of indigenous starter microorganisms and physicochemical parameters in spontaneously fermented beef, horse, wild boar and pork salamis produced under controlled conditions. Food Microbiology, 2020, 87, 103385.	4.2	26
35	Design and Implementation of a Smart System to Control Aromatic Herb Dehydration Process. Agriculture (Switzerland), 2020, 10, 332.	3.1	6
36	Use of grape racemes from Grillo cultivar to increase the acidity level of sparkling base wines produced with different Saccharomyces cerevisiae strains. Yeast, 2020, 37, 475-486.	1.7	7

#	Article	IF	CITATIONS
37	Evaluation of the Fermentation Dynamics of Commercial Baker's Yeast in Presence of Pistachio Powder to Produce Lysine-Enriched Breads. Fermentation, 2020, 6, 2.	3.0	11
38	Molecular analysis of the dominant lactic acid bacteria of chickpea liquid starters and doughs and propagation of chickpea sourdoughs with selected Weissella confusa. Food Microbiology, 2020, 91, 103490.	4.2	24
39	Biodiversity and dairy traits of lactic acid bacteria from foliage of aromatic plants before and after dehydration process monitored by a smart sensors system. FEMS Microbiology Letters, 2020, 367, .	1.8	2
40	Biodiversity and dairy traits of indigenous milk lactic acid bacteria grown in presence of the main grape polyphenols. FEMS Microbiology Letters, 2020, 367, .	1.8	12
41	Microbial dynamics in durum wheat kernels during aging. International Journal of Food Microbiology, 2020, 324, 108631.	4.7	17
42	Addition of selected starter/non-starter lactic acid bacterial inoculums to stabilise PDO Pecorino Siciliano cheese production. Food Research International, 2020, 136, 109335.	6.2	19
43	Effects of adding solid and molten chocolate on the physicochemical, antioxidant, microbiological, and sensory properties of ewe's milk cheese. Journal of Food Science, 2020, 85, 556-566.	3.1	5
44	Antibacterial biopolymeric foams: Structure–property relationship and carvacrol release kinetics. European Polymer Journal, 2019, 121, 109298.	5.4	17
45	Microbiological Profile and Bioactive Properties of Insect Powders Used in Food and Feed Formulations. Foods, 2019, 8, 400.	4.3	45
46	Transformation of raw ewes' milk applying "Grana―type pressed cheese technology: Development of extra-hard "Gran Ovino―cheese. International Journal of Food Microbiology, 2019, 307, 108277.	4.7	10
47	Improvement of Oxidative Status, Milk and Cheese Production, and Food Sustainability Indexes by Addition of Durum Wheat Bran to Dairy Cows' Diet. Animals, 2019, 9, 698.	2.3	14
48	Characteristics of sourdoughs and baked pizzas as affected by starter culture inoculums. International Journal of Food Microbiology, 2019, 293, 114-123.	4.7	19
49	Evaluation of microbiological and physicoâ€chemical parameters of retail readyâ€ŧoâ€eat monoâ€varietal salads. Journal of Food Processing and Preservation, 2019, 43, e13955.	2.0	6
50	Evolution of shelf life parameters of ready-to-eat escarole (Cichorium endivia var. latifolium) subjected to different cutting operations. Scientia Horticulturae, 2019, 247, 175-183.	3.6	20
51	Effect of saffron addition on the microbiological, physicochemical, antioxidant and sensory characteristics of yoghurt. International Journal of Dairy Technology, 2019, 72, 208-217.	2.8	35
52	Influence of the early bacterial biofilms developed on vats made with seven wood types on PDO Vastedda della valle del Belìce cheese characteristics. International Journal of Food Microbiology, 2019, 291, 91-103.	4.7	30
53	Influence of agronomic practices and pre-harvest conditions on the attachment and development of Listeria monocytogenes in vegetables. Annals of Microbiology, 2019, 69, 185-199.	2.6	37
54	Microbiological, chemical and sensory aspects of bread supplemented with different percentages of the culinary mushroom <i>Pleurotus eryngii</i> in powder form. International Journal of Food Science and Technology, 2019, 54, 1197-1205.	2.7	29

#	Article	IF	CITATIONS
55	Shelf life evaluation of fresh-cut red chicory subjected to different minimal processes. Food Microbiology, 2018, 73, 298-304.	4.2	28
56	Formation and Characterization of Early Bacterial Biofilms on Different Wood Typologies Applied in Dairy Production. Applied and Environmental Microbiology, 2018, 84, .	3.1	50
57	Spoilage potential of brettanomyces bruxellensis strains isolated from Italian wines. Food Research International, 2018, 105, 668-677.	6.2	18
58	Performances of Different Metabolic Lactobacillus Groups During the Fermentation of Pizza Doughs Processed from Semolina. Fermentation, 2018, 4, 61.	3.0	9
59	Impact of packaging on the microbiological, physicochemical and sensory characteristics of a "pasta filata―cheese. Food Packaging and Shelf Life, 2018, 17, 85-90.	7.5	17
60	Approaches to improve the growth of the starter lactic acid bacterium OM13 during the early stages of green Spanish-style table olive production. Grasas Y Aceites, 2018, 69, 265.	0.9	6
61	Effect of refrigerated storage on microbiological, chemical and sensory characteristics of a ewes' raw milk stretched cheese. Food Packaging and Shelf Life, 2017, 11, 67-73.	7.5	22
62	Inhibitory Activity and Chemical Characterization of <i>Daucus carota</i> subsp. <i>maximus</i> Essential Oils. Chemistry and Biodiversity, 2017, 14, e1600477.	2.1	17
63	Enteric bacteria of food ice and their survival in alcoholic beverages and soft drinks. Food Microbiology, 2017, 67, 17-22.	4.2	41
64	The individual contribution of starter and non-starter lactic acid bacteria to the volatile organic compound composition of Caciocavallo Palermitano cheese. International Journal of Food Microbiology, 2017, 259, 35-42.	4.7	67
65	Presence of pathogenic bacteria in ice cubes and evaluation of their survival in different systems. Annals of Microbiology, 2017, 67, 827-835.	2.6	9
66	Effect of the lemon essential oils on the safety and sensory quality of salted sardines (Sardina) Tj ETQq0 0 0 rgB1	- /Qyerlock	2 10 Tf 50 30
67	Monitoring of wheat lactic acid bacteria from the field until the first step of dough fermentation. Food Microbiology, 2017, 62, 256-269.	4.2	53
68	Evaluation of different conditions to enhance the performances of Lactobacillus pentosus OM13 during industrial production of Spanish-style table olives. Food Microbiology, 2017, 61, 150-158.	4.2	37
69	Phage Biodiversity in Artisanal Cheese Wheys Reflects the Complexity of the Fermentation Process. Viruses, 2017, 9, 45.	3.3	21
70	Effect of the mechanical harvest of drupes on the quality characteristics of green fermented table olives. Journal of the Science of Food and Agriculture, 2016, 96, 2004-2017.	3.5	19
71	A large factory-scale application of selected autochthonous lactic acid bacteria for PDO Pecorino Siciliano cheese production. Food Microbiology, 2016, 59, 66-75.	4.2	43
72	Industrial application of selected lactic acid bacteria isolated from local semolinas for typical sourdough bread production. Food Microbiology, 2016, 59, 43-56.	4.2	69

#	Article	IF	CITATIONS
73	Evaluation of antimicrobial resistance and virulence of enterococci from equipment surfaces, raw materials, and traditional cheeses. International Journal of Food Microbiology, 2016, 236, 107-114.	4.7	78
74	Selection of Amine-Oxidizing Dairy Lactic Acid Bacteria and Identification of the Enzyme and Gene Involved in the Decrease of Biogenic Amines. Applied and Environmental Microbiology, 2016, 82, 6870-6880.	3.1	75
75	Development of a method for the direct fermentation of semolina by selected sourdough lactic acid bacteria. International Journal of Food Microbiology, 2016, 239, 65-78.	4.7	48
76	Development of new non-dairy beverages from Mediterranean fruit juices fermented with water kefir microorganisms. Food Microbiology, 2016, 54, 40-51.	4.2	124
77	Microbial Activation of Wooden Vats Used for Traditional Cheese Production and Evolution of Neoformed Biofilms. Applied and Environmental Microbiology, 2016, 82, 585-595.	3.1	41
78	Characterization of kefir-like beverages produced from vegetable juices. LWT - Food Science and Technology, 2016, 66, 572-581.	5.2	96
79	Optimised method for the analysis of phenolic compounds from caper (Capparis spinosa L.) berries and monitoring of their changes during fermentation. Food Chemistry, 2016, 196, 1172-1179.	8.2	36
80	Hygienic characteristics of radishes grown in soil contaminated with Stenotrophomonas maltophilia. Chemical and Biological Technologies in Agriculture, 2015, 2, .	4.6	4
81	Characterisation of the microflora contaminating the wooden vats used for traditional Sicilian cheese production. Italian Journal of Food Safety, 2015, 4, 4509.	0.8	10
82	A survey of the main technology, biochemical and microbiological features influencing the concentration of biogenic amines of twenty Apulian and Sicilian (Southern Italy) cheeses. International Dairy Journal, 2015, 43, 61-69.	3.0	24
83	Transfer, composition and technological characterization of the lactic acid bacterial populations of the wooden vats used to produce traditional stretched cheeses. Food Microbiology, 2015, 52, 31-41.	4.2	59
84	Codominance of Lactobacillus plantarum and obligate heterofermentative lactic acid bacteria during sourdough fermentation. Food Microbiology, 2015, 51, 57-68.	4.2	64
85	An innovative method to produce green table olives based on "pied de cuve―technology. Food Microbiology, 2015, 50, 126-140.	4.2	43
86	The influence of the wooden equipment employed for cheese manufacture on the characteristics of a traditional stretched cheese during ripening. Food Microbiology, 2015, 46, 81-91.	4.2	48
87	Production, stability, gene sequencing and in situ anti-Listeria activity of mundticin KS expressed by three Enterococcus mundtii strains. Food Control, 2014, 35, 311-322.	5.5	24
88	Cultivable microorganisms associated with honeys of different geographical and botanical origin. Food Microbiology, 2014, 38, 284-294.	4.2	75
89	In vivo application and dynamics of lactic acid bacteria for the four-season production of Vastedda-like cheese. International Journal of Food Microbiology, 2014, 177, 37-48.	4.7	26
90	Identification, typing and investigation of the dairy characteristics of lactic acid bacteria isolated from "Vastedda della valle del Belìce―cheeses. Dairy Science and Technology, 2014, 94, 157-180.	2.2	38

#	Article	IF	CITATIONS
91	Microbiological and chemical monitoring of Marsala base wine obtained by spontaneous fermentation during large-scale production. Annals of Microbiology, 2014, 64, 1643-1657.	2.6	16
92	Evolution of microbiological and chemical parameters during red wine making with extended post-fermentation maceration. International Journal of Food Microbiology, 2014, 171, 84-93.	4.7	35
93	Animal Rennets as Sources of Dairy Lactic Acid Bacteria. Applied and Environmental Microbiology, 2014, 80, 2050-2061.	3.1	42
94	Yeasts vectored by migratory birds collected in the Mediterranean island of Ustica and description of <i>Phaffomyces usticensis</i> f.a. sp. nov., a new species related to the cactus ecoclade. FEMS Yeast Research, 2014, 14, 910-921.	2.3	22
95	New trends in technology and identity of traditional dairy and fermented meat production processes: Preservation of typicality and hygiene. Trends in Food Science and Technology, 2014, 37, 51-58.	15.1	52
96	Diversity and technological potential of lactic acid bacteria of wheat flours. Food Microbiology, 2013, 36, 343-354.	4.2	97
97	An integrated technological approach to the selection of lactic acid bacteria of flour origin for sourdough production. Food Research International, 2013, 54, 1569-1578.	6.2	58
98	Effect of the natural winemaking process applied at industrial level on the microbiological and chemical characteristics of wine. Journal of Bioscience and Bioengineering, 2013, 116, 347-356.	2.2	19
99	Microbial characterisation of fermented meat products from the Sicilian swine breed "Suino Nero Dei Nebrodi― Annals of Microbiology, 2013, 63, 53-62.	2.6	19
100	Selected lactic acid bacteria as a hurdle to the microbial spoilage ofÂcheese: Application on a traditional raw ewes' milk cheese. International Dairy Journal, 2013, 32, 126-132.	3.0	36
101	Microbiological investigation of Raphanus sativus L. grown hydroponically in nutrient solutions contaminated with spoilage and pathogenic bacteria. International Journal of Food Microbiology, 2013, 160, 344-352.	4.7	28
102	Yeast ecology of vineyards within Marsala wine area (western Sicily) in two consecutive vintages and selection of autochthonous Saccharomyces cerevisiae strains. Journal of Bioscience and Bioengineering, 2012, 114, 606-614.	2.2	61
103	Investigation of the hygienic safety of aromatic plants cultivated in soil contaminated with Listeria monocytogenes. Food Control, 2012, 26, 213-219.	5.5	17
104	Use of selected autochthonous lactic acid bacteria for Spanish-style table olive fermentation. Food Microbiology, 2012, 30, 8-16.	4.2	97
105	Extension of TosÃʿʿla cheese shelf-life using non-starter lactic acid bacteria. Food Microbiology, 2011, 28, 883-890.	4.2	25
106	Microbial analysis of raw cows' milk used for cheese-making: influence of storage treatments on microbial composition and other technological traits. World Journal of Microbiology and Biotechnology, 2011, 27, 171-180.	3.6	49
107	Effect of different salting technologies on the chemical and microbiological characteristics of PDO Pecorino Siciliano cheese. European Food Research and Technology, 2011, 233, 931-940.	3.3	34
108	Ecology and technological capability of lactic acid bacteria isolated during Grillo grape vinification in the Marsala production area. Annals of Microbiology, 2011, 61, 79-84.	2.6	12

#	Article	IF	CITATIONS
109	Indigenous yeast communities in the environment of "Rovello bianco―grape variety and their use in commercial white wine fermentation. World Journal of Microbiology and Biotechnology, 2010, 26, 337-351.	3.6	55
110	Non-starter lactic acid bacteria used to improve cheese quality and provide health benefits. Food Microbiology, 2010, 27, 691-697.	4.2	337
111	Biodiversity and technological potential of wild lactic acid bacteria from raw cows' milk. International Dairy Journal, 2009, 19, 3-11.	3.0	161
112	Application of bacteriocins in vegetable food biopreservation. International Journal of Food Microbiology, 2008, 121, 123-138.	4.7	342
113	An investigation of the bacteriocinogenic potential of lactic acid bacteria associated with wheat (Triticum durum) kernels and non-conventional flours. LWT - Food Science and Technology, 2008, 41, 1173-1182.	5.2	35
114	Lactobacilli in sourdough fermentation. Food Research International, 2007, 40, 539-558.	6.2	375
115	Identification of subdominant sourdough lactic acid bacteria and their evolution during laboratory-scale fermentations. Food Microbiology, 2007, 24, 592-600.	4.2	74
116	A taxonomic survey of lactic acid bacteria isolated from wheat (Triticum durum) kernels and non-conventional flours. Systematic and Applied Microbiology, 2007, 30, 561-571.	2.8	98
117	Combination of Multiplex PCR and PCR-Denaturing Gradient Gel Electrophoresis for Monitoring Common Sourdough-Associated Lactobacillus Species. Applied and Environmental Microbiology, 2006, 72, 3793-3796.	3.1	34
118	Lactobacillus rossii sp. nov., isolated from wheat sourdough. International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 35-40.	1.7	83
119	Rapid Differentiation and In Situ Detection of 16 Sourdough Lactobacillus Species by Multiplex PCR. Applied and Environmental Microbiology, 2005, 71, 3049-3059.	3.1	60