Hajime Kubo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9662918/publications.pdf

Version: 2024-02-01

686830 887659 20 955 13 17 citations h-index g-index papers 20 20 20 1740 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cortical bone stem cells modify cardiac inflammation after myocardial infarction by inducing a novel macrophage phenotype. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H684-H701.	1.5	16
2	Cortical bone stem cell-derived exosomes' therapeutic effect on myocardial ischemia-reperfusion and cardiac remodeling. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H1014-H1029.	1.5	14
3	Cell Surface and Functional Features of Cortical Bone Stem Cells. International Journal of Molecular Sciences, 2021, 22, 11849.	1.8	O
4	GDF11 Decreases Pressure Overload–Induced Hypertrophy, but Can Cause Severe Cachexia and Premature Death. Circulation Research, 2018, 123, 1220-1231.	2.0	40
5	Role of STIM1 (Stromal Interaction Molecule 1) in Hypertrophy-Related Contractile Dysfunction. Circulation Research, 2017, 121, 125-136.	2.0	36
6	Cortical Bone Stem Cell Therapy Preserves Cardiac Structure and Function After Myocardial Infarction. Circulation Research, 2017, 121, 1263-1278.	2.0	45
7	Remodeling of repolarization and arrhythmia susceptibility in a myosin-binding protein C knockout mouse model. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H620-H630.	1.5	12
8	Acute Catecholamine Exposure Causes Reversible Myocyte Injury Without Cardiac Regeneration. Circulation Research, 2016, 119, 865-879.	2.0	71
9	Abstract 2: Cortical Bone Stem Cells Derived Exosomes as Potent Modulator of Cardiac Immune Response and Repair After Injury. Circulation Research, 2016, 119, .	2.0	0
10	Abstract 364: Cortical Bone Stem Cells Derived Exosomes as Potent Modulator of Cardiac Immune Response and Repair After Injury. Circulation Research, 2016, 119, .	2.0	0
11	Autologous câ€Kit+ Mesenchymal Stem Cell Injections Provide Superior Therapeutic Benefit as Compared to câ€Kit+ Cardiacâ€Derived Stem Cells in a Feline Model of Isoproterenolâ€Induced Cardiomyopathy. Clinical and Translational Science, 2015, 8, 425-431.	1.5	24
12	Unique Features of Cortical Bone Stem Cells Associated With Repair of the Injured Heart. Circulation Research, 2015, 117, 1024-1033.	2.0	29
13	Sorafenib Cardiotoxicity Increases Mortality After Myocardial Infarction. Circulation Research, 2014, 114, 1700-1712.	2.0	69
14	Transient Receptor Potential Channels Contribute to Pathological Structural and Functional Remodeling After Myocardial Infarction. Circulation Research, 2014, 115, 567-580.	2.0	101
15	Bone-Derived Stem Cells Repair the Heart After Myocardial Infarction Through Transdifferentiation and Paracrine Signaling Mechanisms. Circulation Research, 2013, 113, 539-552.	2.0	156
16	câ€Kit ⁺ Bone Marrow Stem Cells Differentiate into Functional Cardiac Myocytes. Clinical and Translational Science, 2009, 2, 26-32.	1.5	23
17	Increased Cardiac Myocyte Progenitors in Failing Human Hearts. Circulation, 2008, 118, 649-657.	1.6	127
18	Differential Effects of Exercise Training on Skeletal Muscle SERCA Gene Expression. Medicine and Science in Sports and Exercise, 2003, 35, 27-31.	0.2	12

#	Article	IF	Citations
19	Patients With End-Stage Congestive Heart Failure Treated With Î ² -Adrenergic Receptor Antagonists Have Improved Ventricular Myocyte Calcium Regulatory Protein Abundance. Circulation, 2001, 104, 1012-1018.	1.6	131
20	Sodium/calcium exchange contributes to contraction and relaxation in failed human ventricular myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 277, H714-H724.	1.5	49