
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9662715/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lung Ultrasound in Children With Systemic Juvenile Idiopathic Arthritis–Associated Interstitial Lung Disease. Arthritis Care and Research, 2023, 75, 983-988.	1.5	7
2	Reasons for Initiating Canakinumab among Patients with Systemic Juvenile Idiopathic Arthritis and Adult-Onset Still's Disease in the U.S. Real-World Settings. Rheumatology and Therapy, 2022, 9, 265-283.	1.1	1
3	Monocyte and bone marrow macrophage transcriptional phenotypes in systemic juvenile idiopathic arthritis reveal TRIM8 as a mediator of IFN-γ hyper-responsiveness and risk for macrophage activation syndrome. Annals of the Rheumatic Diseases, 2021, 80, 617-625.	0.5	31
4	Janus kinase (JAK) inhibition with baricitinib in refractory juvenile dermatomyositis. Annals of the Rheumatic Diseases, 2021, 80, 406-408.	0.5	53
5	Repression of CTSC, ELANE and PRTN3-mediated histone H3 proteolytic cleavage promotes monocyte-to-macrophage differentiation. Nature Immunology, 2021, 22, 711-722.	7.0	36
6	Inflammatory biomarkers in COVID-19-associated multisystem inflammatory syndrome in children, Kawasaki disease, and macrophage activation syndrome: a cohort study. Lancet Rheumatology, The, 2021, 3, e574-e584.	2.2	77
7	Reasons for canakinumab initiation among patients with periodic fever syndromes: a retrospective medical chart review from the United States. Pediatric Rheumatology, 2021, 19, 143.	0.9	1
8	IFN-γ is essential for alveolar macrophage–driven pulmonary inflammation in macrophage activation syndrome. JCI Insight, 2021, 6, .	2.3	18
9	Targeting interferon-Î ³ in hyperinflammation: opportunities and challenges. Nature Reviews Rheumatology, 2021, 17, 678-691.	3.5	57
10	Macrophage Activation Syndrome (MAS) in Systemic Juvenile Idiopathic Arthritis (sJIA): Treatment with Emapalumab, an Anti-Interferon Gamma (IFNγ) Monoclonal Antibody. Blood, 2021, 138, 2058-2058.	0.6	5
11	Trials in Progress: A Two-Cohort, Open-Label, Single-Arm Study of Emapalumab, an Anti-Interferon Gamma (IFNI³) Monoclonal Antibody, in Patients with Macrophage Activation Syndrome (MAS) in Rheumatic Diseases. Blood, 2021, 138, 4195-4195.	0.6	3
12	IL-18 as therapeutic target in a patient with resistant systemic juvenile idiopathic arthritis and recurrent macrophage activation syndrome. Rheumatology, 2020, 59, 442-445.	0.9	50
13	IL-18 as a biomarker linking systemic juvenile idiopathic arthritis and macrophage activation syndrome. Rheumatology, 2020, 59, 361-366.	0.9	73
14	A novel STING1 variant causes a recessive form of STING-associated vasculopathy with onset in infancy (SAVI). Journal of Allergy and Clinical Immunology, 2020, 146, 1204-1208.e6.	1.5	45
15	The use of S100 proteins testing in juvenile idiopathic arthritis and autoinflammatory diseases in a pediatric clinical setting: a retrospective analysis. Pediatric Rheumatology, 2020, 18, 7.	0.9	24
16	On the Alert for Cytokine Storm: Immunopathology in <scp>COVID</scp> â€19. Arthritis and Rheumatology, 2020, 72, 1059-1063.	2.9	562
17	Systemic Juvenile Idiopathic Arthritis–Associated Lung Disease: Characterization and Risk Factors. Arthritis and Rheumatology, 2019, 71, 1943-1954.	2.9	124
18	Emergent high fatality lung disease in systemic juvenile arthritis. Annals of the Rheumatic Diseases, 2019, 78, 1722-1731.	0.5	122

#	Article	IF	CITATIONS
19	A Multiparameter Flow Cytometry Analysis Panel to Assess CD163 mRNA and Protein in Monocyte and Macrophage Populations in Hyperinflammatory Diseases. Journal of Immunology, 2019, 202, 1635-1643.	0.4	19
20	Serum S100A8/A9 and S100A12 Levels in Children With Polyarticular Forms of Juvenile Idiopathic Arthritis: Relationship to Maintenance of Clinically Inactive Disease During Anti–Tumor Necrosis Factor Therapy and Occurrence of Disease Flare After Discontinuation of Therapy. Arthritis and Rheumatology, 2019, 71, 451-459.	2.9	36
21	Genetics of Macrophage Activation Syndrome in Systemic Juvenile Idiopathic Arthritis. , 2019, , 131-138.		1
22	Risk, Timing, and Predictors of Disease Flare After Discontinuation of Anti–Tumor Necrosis Factor Therapy inAChildren With Polyarticular Forms of Juvenile IdiopathicÂArthritis With Clinically Inactive Disease. Arthritis and Rheumatology, 2018, 70, 1508-1518.	2.9	26
23	MicroRNA networks associated with active systemic juvenile idiopathic arthritis regulate CD163 expression and anti-inflammatory functions in macrophages through two distinct mechanisms. Journal of Leukocyte Biology, 2018, 103, 71-85.	1.5	19
24	Brief Report: Novel <i>UNC13D</i> Intronic Variant Disrupting an NFâ€ՔB Enhancer in a Patient With Recurrent Macrophage Activation Syndrome and Systemic Juvenile Idiopathic Arthritis. Arthritis and Rheumatology, 2018, 70, 963-970.	2.9	30
25	Interleukin-18 diagnostically distinguishes and pathogenically promotes human and murine macrophage activation syndrome. Blood, 2018, 131, 1442-1455.	0.6	288
26	Neutralization of IFN-Î ³ reverts clinical and laboratory features in a mouse model of macrophage activation syndrome. Journal of Allergy and Clinical Immunology, 2018, 141, 1439-1449.	1.5	96
27	Neutrophils From Children With Systemic Juvenile Idiopathic Arthritis Exhibit Persistent Proinflammatory Activation Despite Long-Standing Clinically Inactive Disease. Frontiers in Immunology, 2018, 9, 2995.	2.2	54
28	Identification of enhanced IFN- \hat{I}^3 signaling in polyarticular juvenile idiopathic arthritis with mass cytometry. JCI Insight, 2018, 3, .	2.3	22
29	Safety and Efficacy of Emapalumab in Pediatric Patients with Primary Hemophagocytic Lymphohistiocytosis. Blood, 2018, 132, LBA-6-LBA-6.	0.6	15
30	Elevated circulating levels of interferon-Î ³ and interferon-Î ³ -induced chemokines characterise patients with macrophage activation syndrome complicating systemic juvenile idiopathic arthritis. Annals of the Rheumatic Diseases, 2017, 76, 166-172.	0.5	222
31	Transcriptional profiles of JIA patient blood with subsequent poor response to methotrexate. Rheumatology, 2017, 56, 1542-1551.	0.9	12
32	Proinflammatory Cytokine Environments Can Drive Interleukinâ€17 Overexpression by γ/δT Cells in Systemic Juvenile Idiopathic Arthritis. Arthritis and Rheumatology, 2017, 69, 1480-1494.	2.9	71
33	Genetic architecture distinguishes systemic juvenile idiopathic arthritis from other forms of juvenile idiopathic arthritis: clinical and therapeutic implications. Annals of the Rheumatic Diseases, 2017, 76, 906-913.	0.5	123
34	Early changes in gene expression and inflammatory proteins in systemic juvenile idiopathic arthritis patients on canakinumab therapy. Arthritis Research and Therapy, 2017, 19, 13.	1.6	49
35	Urine S100 proteins as potential biomarkers of lupus nephritis activity. Arthritis Research and Therapy, 2017, 19, 242.	1.6	50
36	Monocyte MicroRNA Expression in Active Systemic Juvenile Idiopathic Arthritis Implicates MicroRNAâ€125aâ€5p in Polarized Monocyte Phenotypes. Arthritis and Rheumatology, 2016, 68, 2300-2313.	2.9	62

#	Article	IF	CITATIONS
37	A Heterozygous <i>RAB27A</i> Mutation Associated with Delayed Cytolytic Granule Polarization and Hemophagocytic Lymphohistiocytosis. Journal of Immunology, 2016, 196, 2492-2503.	0.4	77
38	2016 Classification Criteria for Macrophage Activation Syndrome Complicating Systemic Juvenile Idiopathic Arthritis: A European League Against Rheumatism/American College of Rheumatology/Paediatric Rheumatology International Trials Organisation Collaborative Initiative. Arthritis and Rheumatology, 2016, 68, 566-576.	2.9	427
39	Rate and Clinical Presentation of Macrophage Activation Syndrome in Patients With Systemic Juvenile Idiopathic Arthritis Treated With Canakinumab. Arthritis and Rheumatology, 2016, 68, 218-228.	2.9	103
40	Relationship of cell-free urine MicroRNA with lupus nephritis in children. Pediatric Rheumatology, 2016, 14, 4.	0.9	16
41	Macrophage activation syndrome in the era of biologic therapy. Nature Reviews Rheumatology, 2016, 12, 259-268.	3.5	323
42	2016 Classification Criteria for Macrophage Activation Syndrome Complicating Systemic Juvenile Idiopathic Arthritis. Annals of the Rheumatic Diseases, 2016, 75, 481-489.	0.5	338
43	Whole-Exome Sequencing Reveals Mutations in Genes Linked to Hemophagocytic Lymphohistiocytosis and Macrophage Activation Syndrome in Fatal Cases of H1N1 Influenza. Journal of Infectious Diseases, 2016, 213, 1180-1188.	1.9	133
44	Systemic onset juvenile idiopathic arthritis and exposure to fine particulate air pollution. Clinical and Experimental Rheumatology, 2016, 34, 946-952.	0.4	8
45	Reply. Arthritis Care and Research, 2015, 67, 1615-1616.	1.5	0
46	11â€Monthâ€Old Infant With Periodic Fevers, Recurrent Liver Dysfunction, and Perforin Gene Polymorphism. Arthritis Care and Research, 2015, 67, 1173-1179.	1.5	19
47	A Novel Targeted Approach to the Treatment of Hemophagocytic Lymphohistiocytosis (HLH) with an Anti-Interferon Gamma (IFNγ) Monoclonal Antibody (mAb), NI-0501: First Results from a Pilot Phase 2 Study in Children with Primary HLH. Blood, 2015, 126, LBA-3-LBA-3.	0.6	48
48	Wholeâ€Exome Sequencing Reveals Overlap Between Macrophage Activation Syndrome in Systemic Juvenile Idiopathic Arthritis and Familial Hemophagocytic Lymphohistiocytosis. Arthritis and Rheumatology, 2014, 66, 3486-3495.	2.9	158
49	Canakinumab for the treatment of systemic juvenile idiopathic arthritis. Expert Review of Clinical Immunology, 2014, 10, 1427-1435.	1.3	6
50	Macrophage activation syndrome and cytokine-directed therapies. Best Practice and Research in Clinical Rheumatology, 2014, 28, 277-292.	1.4	127
51	Genetic Defects in Cytolysis in Macrophage Activation Syndrome. Current Rheumatology Reports, 2014, 16, 439.	2.1	113
52	The limited role of interferonâ€î³ in systemic juvenile idiopathic arthritis cannot be explained by cellular hyporesponsiveness. Arthritis and Rheumatism, 2012, 64, 3799-3808.	6.7	43
53	Pathogenesis of systemic juvenile idiopathic arthritis: some answers, more questions. Nature Reviews Rheumatology, 2011, 7, 416-426.	3.5	263
54	Gene expression profiling of peripheral blood mononuclear cells from children with active hemophagocytic lymphohistiocytosis. Blood, 2011, 117, e151-e160.	0.6	85

#	Article	IF	CITATIONS
55	Macrophage activation syndrome: advances towards understanding pathogenesis. Current Opinion in Rheumatology, 2010, 22, 561-566.	2.0	178
56	Macrophage activation syndrome in patients with systemic juvenile idiopathic arthritis is associated with MUNC13â€4 polymorphisms. Arthritis and Rheumatism, 2008, 58, 2892-2896.	6.7	155
57	The diagnostic significance of soluble CD163 and soluble interleukin-2 receptor α-chain in macrophage activation syndrome and untreated new-onset systemic juvenile idiopathic arthritis. Arthritis and Rheumatism, 2007, 56, 965-971.	6.7	294
58	Gene expression profiling of peripheral blood from patients with untreated newâ€onset systemic juvenile idiopathic arthritis reveals molecular heterogeneity that may predict macrophage activation syndrome. Arthritis and Rheumatism, 2007, 56, 3793-3804.	6.7	216
59	Natural killer cell dysfunction: A common pathway in systemic-onset juvenile rheumatoid arthritis, macrophage activation syndrome, and hemophagocytic lymphohistiocytosis?. Arthritis and Rheumatism, 2004, 50, 689-698.	6.7	204
60	Natural killer cell dysfunction in patients with systemic-onset juvenile rheumatoid arthritis and macrophage activation syndrome. Journal of Pediatrics, 2003, 142, 292-296.	0.9	257
61	Macrophage activation syndrome and reactive hemophagocytic lymphohistiocytosis: the same entities?. Current Opinion in Rheumatology, 2003, 15, 587-590.	2.0	130
62	Expression of angiogenic factors in juvenile rheumatoid arthritis: Correlation with revascularization of human synovium engrafted into SCID mice. Arthritis and Rheumatism, 2001, 44, 794-801.	6.7	38
63	Comparative sequence analysis of the human T cell receptor ? chain in juvenile rheumatoid arthritis and juvenile spondylarthropathies: Evidence for antigenic selection of T cells in the synovium. Arthritis and Rheumatism, 1998, 41, 482-497.	6.7	37
64	Patterns of expression of tumor necrosis factor α, tumor necrosis factor β, and their receptors in synovia of patients with juvenile rheumatoid arthritis and juvenile spondylarthropathy. Arthritis and Rheumatism, 1996, 39, 1703-1710.	6.7	167
65	Juvenile rheumatoid arthritis and the trimolecular complex (hla, t cell receptor, and antigen). Arthritis and Rheumatism, 1994, 37, 601-607.	6.7	29