
Sung Hyuk Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9662633/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparative study of extrudability, microstructure, and mechanical properties of AZ80 and BA53 alloys. Journal of Magnesium and Alloys, 2023, 11, 249-258.	11.9	21
2	Acceleration of aging behavior and improvement of mechanical properties of extruded AZ80 alloy through (10–12) twinning. Journal of Magnesium and Alloys, 2023, 11, 671-683.	11.9	15
3	Effects of surface roughness on bending properties of rolled AZ31 alloy. Journal of Magnesium and Alloys, 2023, 11, 1224-1235.	11.9	6
4	Microstructural characteristics and low-cycle fatigue properties of AZ91 and AZ91–Ca–Y alloys extruded at different temperatures. Journal of Magnesium and Alloys, 2023, 11, 892-902.	11.9	9
5	Aging Hardening and Precipitation Characteristics of Extruded Mg–9Al–0.8Zn–0.2Mn–0.3Ca–0.2Y Alloy. Metals and Materials International, 2023, 29, 381-389.	3.4	5
6	Difference in extrusion temperature dependences of microstructure and mechanical properties between extruded AZ61 and AZ91 alloys. Journal of Magnesium and Alloys, 2023, 11, 1683-1696.	11.9	9
7	Bending properties of extruded AZ91–0.9Ca–0.6Y alloy and their improvement through precompression and annealing. Journal of Magnesium and Alloys, 2022, 10, 2238-2251.	11.9	9
8	Variations in microstructure and bending formability of extruded Mg–Al–Zn–Ca–Y–MM alloy with precompression and subsequent annealing treatment conditions. Journal of Magnesium and Alloys, 2022, 10, 2475-2490.	11.9	11
9	Effects of Sn addition on the microstructure and mechanical properties of extruded Mg–Bi binary alloy. Journal of Magnesium and Alloys, 2022, 10, 850-861.	11.9	14
10	Improvement in tensile strength of extruded Mg–5Bi alloy through addition of Sn and its underlying strengthening mechanisms. Journal of Magnesium and Alloys, 2022, 10, 3100-3112.	11.9	12
11	Extrusion limit diagram of AZ91–0.9Ca–0.6Y–0.5MM alloy and effects of extrusion parameters on its microstructure and mechanical properties. Journal of Magnesium and Alloys, 2022, 10, 3447-3458.	11.9	15
12	Effects of homogenization temperature on microstructure and mechanical properties of high-speed-extruded Mg–5Bi–3Al alloy. Journal of Magnesium and Alloys, 2022, 10, 2833-2846.	11.9	24
13	Automated picking-sorting system for assembling components in an IKEA chair based on the robotic vision system. International Journal of Computer Integrated Manufacturing, 2022, 35, 583-597.	4.6	3
14	Tensile and High-Cycle Fatigue Properties of Extruded AZ91–0.3Ca–0.2Y Alloy with Excellent Corrosion and Ignition Resistances. Metals and Materials International, 2022, 28, 385-396.	3.4	9
15	Low-cycle fatigue properties and unified fatigue life prediction equation of hot-rolled twin-roll-cast AZ31 sheets with different thicknesses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 833, 142349.	5.6	4
16	Bending-deformation-induced inhomogeneous aging behavior and accelerated precipitation kinetics of extruded AZ80 alloy. Journal of Alloys and Compounds, 2022, 918, 165613.	5.5	2
17	Inspecting Method for Defective Casting Products with Convolutional Neural Network (CNN). International Journal of Precision Engineering and Manufacturing - Green Technology, 2021, 8, 583-594.	4.9	47
18	Significant Improvement in Extrudability of Mg–9Al–0.8Zn–0.9Ca–0.6Y Alloy Through Mischmetal Addition. Metals and Materials International, 2021, 27, 514-521.	3.4	18

#	Article	IF	CITATIONS
19	Effects of initial texture on deformation behavior during cold rolling and static recrystallization during subsequent annealing of AZ31 alloy. Journal of Materials Science and Technology, 2021, 66, 139-149.	10.7	31
20	Influence of undissolved second-phase particles on dynamic recrystallization behavior of Mg–7Sn–1Al–1Zn alloy during low- and high-temperature extrusions. Journal of Materials Science and Technology, 2021, 71, 87-97.	10.7	41
21	Unusual relationship between extrusion temperature and tensile strength of extruded Mg–Al–Zn–Ca–Y–MM alloy. Journal of Alloys and Compounds, 2021, 862, 158051.	5.5	10
22	Effects of Ti addition on the microstructure and mechanical properties of Al–Zn–Mg–Cu–Zr alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 801, 140437.	5.6	29
23	Effects of Extrusion Speed on the Microstructure and Mechanical Properties of Mg–9Al–0.8Zn–0.9Ca–0.6Y–0.5MM Alloy. Metals and Materials International, 2021, 27, 530-537.	3.4	24
24	Effects of post-heat treatment on microstructure, tensile properties, and bending properties of extruded AZ80 alloy. Journal of Materials Research and Technology, 2021, 12, 1039-1050.	5.8	16
25	Microstructural evolution of rolled AZ31 alloy plate during in-plane compression and annealing: Effect of amount of compressive strain. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 826, 141974.	5.6	4
26	Comparative study of tensile and high-cycle fatigue properties of extruded AZ91 and AZ91–0.3Ca–0.2Y alloys. Journal of Materials Science and Technology, 2021, 93, 41-52.	10.7	20
27	Effect of initial microstructure on graphitization behavior of Fe–0.55C–2.3Si steel. Journal of Materials Research and Technology, 2021, 15, 4529-4540.	5.8	3
28	Loading Direction Dependence of Yield-Point Phenomenon and Bauschinger Effect in API X70 Steel Sheet. Metals and Materials International, 2020, 26, 14-24.	3.4	13
29	Effect of Rolling and Coiling Temperatures on Microstructure and Mechanical Properties of Medium-Carbon Pipeline Steel. Metals and Materials International, 2020, 26, 1757-1765.	3.4	10
30	Improvement in Mechanical Properties of Rolled AZ31 Alloy Through Combined Addition of Ca and Gd. Metals and Materials International, 2020, 26, 1779-1785.	3.4	13
31	Significant improvement in the mechanical properties of an extruded Mg–5Bi alloy through the addition of Al. Journal of Alloys and Compounds, 2020, 821, 153442.	5.5	23
32	Effects of B and Ti addition and heat treatment temperature on graphitization behavior of Fe-0.55C-2.3Si steel. Journal of Materials Research and Technology, 2020, 9, 11189-11200.	5.8	3
33	Effect of laser patterning on the material behaviour of 22MnB5 steel with induced local strengthening. International Journal of Advanced Manufacturing Technology, 2020, 107, 4983-4994.	3.0	1
34	Microstructural characteristics of AZ31 alloys rolled at room and cryogenic temperatures and their variation during annealing. Journal of Magnesium and Alloys, 2020, 8, 537-545.	11.9	26
35	Graphitization behavior of medium-carbon high-silicon steel and its dependence on temperature and grain size. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 785, 139392.	5.6	8
36	Evolution of Microstructure and Mechanical Properties of Graphitized Fe–0.55C–2.3Si Steel During Quenching and Tempering Treatment. Metals and Materials International, 2020, 27, 3730.	3.4	3

#	Article	IF	CITATIONS
37	Effects of Ca addition on the microstructures and mechanical properties of as-extruded Mg–Bi alloys. Journal of Alloys and Compounds, 2020, 834, 155216.	5.5	33
38	Novel Mg–Bi–Al alloy with extraordinary extrudability and high strength. Journal of Alloys and Compounds, 2020, 843, 156026.	5.5	37
39	Fabrication of very-high-strength pure copper with fine grain structure through multi-axial diagonal forging. Materials Letters, 2020, 269, 127663.	2.6	5
40	Static recrystallization mechanism in cold-rolled magnesium alloy with off-basal texture based on quasi in situ EBSD observations. Journal of Alloys and Compounds, 2020, 844, 156185.	5.5	17
41	Variation in dynamic deformation behavior and resultant yield asymmetry of AZ80 alloy with extrusion temperature. Journal of Materials Science and Technology, 2020, 46, 225-236.	10.7	41
42	Influence of Bi addition on dynamic recrystallization and precipitation behaviors during hot extrusion of pure Mg. Journal of Materials Science and Technology, 2020, 44, 62-75.	10.7	62
43	Effect of Multi-Pass Caliber Rolling on Dilute Extruded Mg-Bi-Ca Alloy. Metals, 2020, 10, 332.	2.3	3
44	Microstructural evolution and grain growth mechanism of pre-twinned magnesium alloy during annealing. Journal of Magnesium and Alloys, 2020, 9, 1233-1233.	11.9	50
45	Influence of extrusion temperature on dynamic deformation behaviors and mechanical properties of Mg-8Al-0.5Zn-0.2Mn-0.3Ca-0.2Y alloy. Journal of Materials Research and Technology, 2019, 8, 5254-5270.	5.8	43
46	Variation in Crystallographic Orientation and Twinning Activation with Size of Individual Grains in Rolled Magnesium Alloy. Metals and Materials International, 2019, 25, 1541-1547.	3.4	17
47	Performance Test for Laminated-Type Prosthetic Foot with Composite Plates. International Journal of Precision Engineering and Manufacturing, 2019, 20, 1777-1786.	2.2	9
48	Partial strengthening method for cold stamped B-pillar with minimal shape change. International Journal of Advanced Manufacturing Technology, 2019, 102, 4241-4255.	3.0	6
49	Microstructural characteristics of magnesium alloy sheets subjected to high-speed rolling and their rolling temperature dependence. Journal of Materials Research and Technology, 2019, 8, 3167-3174.	5.8	18
50	Microstructural evolution of twin-roll-cast Al–Mn alloy during cold rolling and subsequent annealing: Effect of number of cold-rolling passes. Journal of Alloys and Compounds, 2019, 797, 504-513.	5.5	7
51	Twinning and slip behaviors and microstructural evolutions of extruded Mg-1Gd alloy with rare-earth texture during tensile deformation. Journal of Alloys and Compounds, 2019, 791, 700-710.	5.5	76
52	Grain size effect on twinning and annealing behaviors of rolled magnesium alloy with bimodal structure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 754, 38-45.	5.6	31
53	Improvement in bending formability of rolled magnesium alloy through precompression and subsequent annealing. Journal of Alloys and Compounds, 2019, 787, 519-526.	5.5	33
54	Image Processing Algorithm for Real-Time Crack Inspection in Hole Expansion Test. International Journal of Precision Engineering and Manufacturing, 2019, 20, 1139-1148.	2.2	12

#	Article	IF	CITATIONS
55	Texture tailoring and bendability improvement of rolled AZ31 alloy using {10–12} twinning: The effect of precompression levels. Journal of Magnesium and Alloys, 2019, 7, 648-660.	11.9	38
56	High-Strength AZ91 Alloy Fabricated by Rapidly Solidified Flaky Powder Metallurgy and Hot Extrusion. Metals and Materials International, 2019, 25, 372-380.	3.4	22
57	Recent Progress and Development in Extrusion of Rare Earth Free Mg Alloys: A Review. Acta Metallurgica Sinica (English Letters), 2019, 32, 145-168.	2.9	74
58	Dynamic deformation behavior and microstructural evolution during high-speed rolling of Mg alloy having non-basal texture. Journal of Materials Science and Technology, 2019, 35, 473-482.	10.7	27
59	Hot Rolling of Flame Retardant Magnesium and Aluminum Alloys to Produce a Cladding Plate. International Journal of Precision Engineering and Manufacturing, 2018, 19, 521-527.	2.2	2
60	Controlling the microstructure and improving the tensile properties of extruded Mg-Sn-Zn alloy through Al addition. Journal of Alloys and Compounds, 2018, 751, 1-11.	5.5	40
61	Microstructural evolution and improvement in mechanical properties of extruded AZ31 alloy by combined addition of Ca and Y. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 725, 309-318.	5.6	48
62	Microstructure and mechanical properties of non-flammable Mg-8Al-0.3Zn-0.1Mn-0.3Ca-0.2Y alloy subjected to low-temperature, low-speed extrusion. Journal of Alloys and Compounds, 2018, 739, 69-76.	5.5	38
63	Effects of homogenization time on aging behavior and mechanical properties of AZ91 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 714, 49-58.	5.6	37
64	Grain-Refined AZ92 Alloy with Superior Strength and Ductility. Metals and Materials International, 2018, 24, 730-737.	3.4	7
65	Dynamic recrystallization behavior and microstructural evolution of Mg alloy AZ31 through high-speed rolling. Journal of Materials Science and Technology, 2018, 34, 1747-1755.	10.7	59
66	Effects of {10–12} Twins on Dynamic Torsional Properties of Extruded AZ31 Magnesium Alloy. Metals and Materials International, 2018, 24, 283-289.	3.4	4
67	Accelerated precipitation behavior of cast Mg-Al-Zn alloy by grain refinement. Journal of Materials Science and Technology, 2018, 34, 265-276.	10.7	54
68	Stripping failure of punching pin in GPa-grade steels. International Journal of Advanced Manufacturing Technology, 2018, 94, 73-83.	3.0	13
69	Underlying mechanisms of drastic reduction in yield asymmetry of extruded Mg-Sn-Zn alloy by Al addition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 733, 285-290.	5.6	19
70	Improvement of mechanical properties and reduction of yield asymmetry of extruded Mg-Al-Zn alloy through Sn addition. Journal of Alloys and Compounds, 2018, 766, 748-758.	5.5	35
71	Relationship between mechanical properties and high-cycle fatigue strength of medium-carbon steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 690, 185-194.	5.6	22
72	Microstructure and mechanical properties of an extruded Mg-8Bi-1Al-1Zn (wt%) alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 690, 80-87.	5.6	49

#	Article	IF	CITATIONS
73	Anisotropic twinning and slip behaviors and their relative activities in rolled alpha-phase titanium. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 698, 54-62.	5.6	28
74	Evolution of high-cycle fatigue behavior of extruded AZ91 alloy by artificial cooling during extrusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 707, 620-628.	5.6	13
75	Effects of cold pre-forging on microstructure and tensile properties of extruded AZ80 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 708, 405-410.	5.6	29
76	Improvement in extrudability and mechanical properties of AZ91 alloy through extrusion with artificial cooling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 703, 1-8.	5.6	51
77	Effects of drawing strain and post-annealing conditions on microstructural evolution and tensile properties of medium- and high-carbon steels. Metals and Materials International, 2017, 23, 1176-1187.	3.4	2
78	Microstructural evolution of extruded AZ31 alloy with bimodal structure during compression. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 702, 1-9.	5.6	13
79	Effect of initial twins on the stress-controlled fatigue behavior of rolled magnesium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 680, 214-220.	5.6	19
80	Microstructure and texture variation with Gd addition in extruded magnesium. Journal of Alloys and Compounds, 2017, 695, 344-350.	5.5	64
81	Effect of billet diameter on hot extrusion behavior of Mg–Al–Zn alloys and its influence on microstructure and mechanical properties. Journal of Alloys and Compounds, 2017, 690, 417-423.	5.5	43
82	Influence of Ce addition and homogenization temperature on microstructural evolution and mechanical properties of extruded Mg-Sn-Al-Zn alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 676, 232-240.	5.6	25
83	High-speed indirect extrusion of Mg–Sn–Al–Zn alloy and its influence on microstructure and mechanical properties. Journal of Alloys and Compounds, 2016, 667, 170-177.	5.5	104
84	Influence of Sn addition on the microstructure and mechanical properties of extruded Mg–8Al–2Zn alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 626, 128-135.	5.6	63
85	Improving the tensile strength of Mg–7Sn–1Al–1Zn alloy through artificial cooling during extrusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 625, 369-373.	5.6	18
86	Effect of Initial Grain Size on Microstructure and Mechanical Properties of Extruded Mg-9Al-0.6Zn Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 5482-5488.	2.2	34
87	Improved mechanical properties of Mg–7.6Al–0.4Zn alloy through aging prior to extrusion. Scripta Materialia, 2014, 93, 8-11.	5.2	109
88	Effects of extrusion parameters on the microstructure and mechanical properties of Mg–Zn–(Mn)–Ce/Gd alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 598, 396-406.	5.6	117
89	Prediction of grain size and yield strength of Mg-7Sn-1Al-1Zn alloys extruded at various temperatures and speeds. Metals and Materials International, 2014, 20, 291-296.	3.4	102
90	Development of extraordinary high-strength Mg–8Al–0.5Zn alloy via a low temperature and slow speed extrusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 610, 445-449.	5.6	162

#	Article	IF	CITATIONS
91	Effects of extrusion speed on the microstructure and mechanical properties of ZK60 alloys with and without 1wt% cerium addition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 583, 25-35.	5.6	87
92	Improving the mechanical properties of extruded Mg–3Al–1Zn alloy by cold pre-forging. Scripta Materialia, 2013, 69, 250-253.	5.2	169
93	Effects of cerium addition on the microstructure, mechanical properties and hot workability of ZK60 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 559, 798-807.	5.6	220
94	Microstructural evolution of indirect-extruded ZK60 alloy by adding Ce. Journal of Alloys and Compounds, 2012, 545, 139-143.	5.5	65
95	Activation mode dependent {10â^'12} twinning characteristics in a polycrystalline magnesium alloy. Scripta Materialia, 2010, 62, 202-205.	5.2	166
96	Role of {10–12} twinning characteristics in the deformation behavior of a polycrystalline magnesium alloy. Acta Materialia, 2010, 58, 5873-5885.	7.9	680