Richárd Farkas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/966259/publications.pdf

Version: 2024-02-01

840776 888059 27 720 11 17 citations h-index g-index papers 30 30 30 737 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The BioScope corpus: biomedical texts annotated for uncertainty, negation and their scopes. BMC Bioinformatics, 2008, 9, S9.	2.6	192
2	Automatic construction of rule-based ICD-9-CM coding systems. BMC Bioinformatics, 2008, 9, S10.	2.6	107
3	State-of-the-art anonymisation of medical records using an iterative machine learning framework. Journal of the American Medical Informatics Association: JAMIA, 2007, , .	4.4	79
4	State-of-the-art Anonymization of Medical Records Using an Iterative Machine Learning Framework. Journal of the American Medical Informatics Association: JAMIA, 2007, 14, 574-580.	4.4	65
5	Cross-Genre and Cross-Domain Detection of Semantic Uncertainty. Computational Linguistics, 2012, 38, 335-367.	3.3	48
6	Assessment of NER solutions against the first and second CALBC Silver Standard Corpus. Journal of Biomedical Semantics, 2011, 2, S11.	1.6	39
7	Semi-automated Construction of Decision Rules to Predict Morbidities from Clinical Texts. Journal of the American Medical Informatics Association: JAMIA, 2009, 16, 601-605.	4.4	22
8	Knowledge Sources for Constituent Parsing of German, a Morphologically Rich and Less-Configurational Language. Computational Linguistics, 2013, 39, 57-85.	3.3	13
9	MOOC Performance Prediction by Deep Learning from Raw Clickstream Data. Communications in Computer and Information Science, 2020, , 474-485.	0.5	13
10	The strength of co-authorship in gene name disambiguation. BMC Bioinformatics, 2008, 9, 69.	2.6	11
11	Linguistic scope-based and biological event-based speculation and negation annotations in the BioScope and Genia Event corpora. Journal of Biomedical Semantics, 2011, 2, S8.	1.6	11
12	Genetic Algorithms to Improve Mask and Illumination Geometries in Lithographic Imaging Systems. Lecture Notes in Computer Science, 2004, , 208-218.	1.3	11
13	A comparative empirical study on social media sentiment analysis over various genres and languages. Artificial Intelligence Review, 2017, 47, 485-505.	15.7	10
14	GYDER., 2007,,.		10
15	Target-oriented opinion mining from tweets. , 2013, , .		7
16	De-identification in natural language processing. , 2014, , .		6
17	Universal Dependencies and Morphology for Hungarian - and on the Price of Universality. , 2017, , .		6
18	Mask and source optimization for lithographic imaging systems. , 2004, , .		5

#	Article	IF	Citations
19	Information Extraction from Hungarian, English and German CVs for a Career Portal. Lecture Notes in Computer Science, 2014, , 333-341.	1.3	4
20	Clickstream-based outcome prediction in short video MOOCs. , 2018, , .		4
21	Special Techniques for Constituent Parsing of Morphologically Rich Languages. , 2014, , .		2
22	SZTE-NLP: Aspect level opinion mining exploiting syntactic cues. , 2014, , .		2
23	Opinion Mining byÂTransformation-BasedÂDomainÂAdaptation. Lecture Notes in Computer Science, 2010, , 157-164.	1.3	1
24	Dependency parsing with latent refinements of part-of-speech tags. , 2014, , .		1
25	Web-Based Lemmatisation of Named Entities. Lecture Notes in Computer Science, 2008, , 53-60.	1.3	1
26	Latent syntactic structure-based sentiment analysis. , 2017, , .		0
27	Deep Learning Models and Interpretations for Multivariate Discrete-Valued Event Sequence Prediction. Lecture Notes in Computer Science, 2021, , 396-406.	1.3	O