Hongyi Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9662123/publications.pdf

Version: 2024-02-01

932766 940134 20 270 10 16 citations g-index h-index papers 20 20 20 265 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effect of SiO2 and Al2O3 on the luminescence properties of inorganic perovskite (CsPbBr3) quantum dot glass. Journal of Non-Crystalline Solids, 2021, 568, 120956.	1.5	3
2	Near-zero-shrinkage Al2O3 ceramic foams with coral-like and hollow-sphere structures via selective laser sintering and reaction bonding. Journal of the European Ceramic Society, 2021, 41, 239-246.	2.8	31
3	Effect of Oxygen Vacancies on the Persistent Luminescence of Y ₃ Al ₂ Ga ₃ O ₁₂ :Ce ³⁺ ,Yb ³⁺ Phosphors. Inorganic Chemistry, 2021, 60, 17797-17809.	1.9	15
4	Influence of Li2O Addition on the Performance of Vitrified Bond and Vitrified Diamond Composites. Journal Wuhan University of Technology, Materials Science Edition, 2020, 35, 699-705.	0.4	1
5	Porous Al2O3 ceramics with spontaneously formed pores and enhanced strength prepared by indirect selective laser sintering combined with reaction bonding. Ceramics International, 2020, 46, 15159-15166.	2.3	23
6	Facile fabrication of SrAl2O4:Eu2+, Dy3+ hollow microsphere by a chemical induction self-transformation process. Ceramics International, 2020, 46, 10807-10813.	2.3	5
7	Facile Preparation of Al2O3 Hollow Microspheres Via a Urea-mediated Precipitation Process. Journal Wuhan University of Technology, Materials Science Edition, 2019, 34, 579-586.	0.4	3
8	A facile procedure for the synthesis of urchin-like Al2O3:Eu3+ hollow microsphere. Materials Letters, 2019, 251, 37-40.	1.3	0
9	Preparation of SrAl ₂ O ₄ :Eu ²⁺ , Dy ³⁺ phosphors using propylene oxide as gel agent and its optical properties. Materials Research Express, 2018, 5, 016201.	0.8	6
10	Synthesis and characterization of a xonotlite fibers–silica aerogel composite by ambient pressure drying. Journal of Porous Materials, 2018, 25, 1417-1425.	1.3	12
11	Synthesis of monolithic alumina-silica hollow microspheres and their heat-shielding performance for adiabatic materials. Ceramics International, 2018, 44, 1545-1555.	2.3	8
12	A facile method to prepare cellulose whiskers–silica aerogel composites. Journal of Sol-Gel Science and Technology, 2017, 83, 72-80.	1.1	22
13	Effect of cooling rate on the microstructure and luminescence properties of Sr ₂ MgSi ₂ O ₇ :Eu ²⁺ ,Dy ³⁺ materials. Luminescence, 2017, 32, 1442-1447.	1.5	11
14	A novel method for synthesizing well-defined boehmite hollow microspheres. Journal of Colloid and Interface Science, 2017, 504, 660-668.	5.0	23
15	Low density and hydrophobic silica aerogels dried under ambient pressure using a new co-precursor method. Journal of Non-Crystalline Solids, 2016, 452, 187-193.	1.5	41
16	Interaction of rare earth ions in Sr2MgSi2O7: Eu2+, Dy3+ material. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 269-273.	0.4	5
17	The effect of grain surface on the long afterglow properties of Sr 2 MgSi 2 O 7 : Eu 2+ , Dy 3+. Materials Research Bulletin, 2016, 76, 358-364.	2.7	23
18	Effect of pulverising process on the luminescence properties of Sr ₂ MgSi ₂ O ₇ :Eu ²⁺ , Dy ³⁺ . EPJ Applied Physics, 2015, 71, 30503.	0.3	5

Hongyi Jiang

#	Article	IF	CITATIONS
19	Preparation and absorption/desorption performance of gypsum-based humidity controlling materials. Journal Wuhan University of Technology, Materials Science Edition, 2011, 26, 684-686.	0.4	5
20	Afterglow phosphor materials Y2O2S: Eu, Mg, Ti doped with various Gd concentrations. Journal of Alloys and Compounds, 2010, 502, 180-183.	2.8	28