
Alexander Hergovich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/965912/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulation of microtubule stability by the von Hippel-Lindau tumour suppressor protein pVHL. Nature Cell Biology, 2003, 5, 64-70.	4.6	309
2	NDR kinases regulate essential cell processes from yeast to humans. Nature Reviews Molecular Cell Biology, 2006, 7, 253-264.	16.1	301
3	The human tumour suppressor LATS1 is activated by human MOB1 at the membrane. Biochemical and Biophysical Research Communications, 2006, 345, 50-58.	1.0	161
4	Regulation of NDR Protein Kinase by Hydrophobic Motif Phosphorylation Mediated by the Mammalian Ste20-Like Kinase MST3. Molecular and Cellular Biology, 2005, 25, 11019-11029.	1.1	141
5	VHL loss causes spindle misorientation and chromosome instability. Nature Cell Biology, 2009, 11, 994-1001.	4.6	141
6	NDR Kinase Is Activated by RASSF1A/MST1 in Response to Fas Receptor Stimulation and Promotes Apoptosis. Current Biology, 2008, 18, 1889-1895.	1.8	139
7	NDR Functions as a Physiological YAP1 Kinase in the Intestinal Epithelium. Current Biology, 2015, 25, 296-305.	1.8	104
8	MOB control: Reviewing a conserved family of kinase regulators. Cellular Signalling, 2011, 23, 1433-1440.	1.7	100
9	Human NDR Kinases Are Rapidly Activated by MOB Proteins through Recruitment to the Plasma Membrane and Phosphorylation. Molecular and Cellular Biology, 2005, 25, 8259-8272.	1.1	98
10	Centrosome-Associated NDR Kinase Regulates Centrosome Duplication. Molecular Cell, 2007, 25, 625-634.	4.5	98
11	The MST1 and hMOB1 Tumor Suppressors Control Human Centrosome Duplication by Regulating NDR Kinase Phosphorylation. Current Biology, 2009, 19, 1692-1702.	1.8	96
12	Human NDR Kinases Control G ₁ /S Cell Cycle Transition by Directly Regulating p21 Stability. Molecular and Cellular Biology, 2011, 31, 1382-1395.	1.1	96
13	RASSF1A Suppresses the Invasion and Metastatic Potential of Human Non–Small Cell Lung Cancer Cells by Inhibiting YAP Activation through the GEF-H1/RhoB Pathway. Cancer Research, 2016, 76, 1627-1640.	0.4	92
14	The Roles of NDR Protein Kinases in Hippo Signalling. Genes, 2016, 7, 21.	1.0	81
15	Regulation and functions of mammalian LATS/NDR kinases: looking beyond canonical Hippo signalling. Cell and Bioscience, 2013, 3, 32.	2.1	80
16	Mammalian NDR/LATS protein kinases in hippo tumor suppressor signaling. BioFactors, 2009, 35, 338-345.	2.6	78
17	Hippo signalling in the G2/M cell cycle phase: Lessons learned from the yeast MEN and SIN pathways. Seminars in Cell and Developmental Biology, 2012, 23, 794-802.	2.3	77
18	Mammalian Hippo signalling: a kinase network regulated by protein–protein interactions. Biochemical Society Transactions, 2012, 40, 124-128.	1.6	74

#	Article	IF	CITATIONS
19	Priming-Dependent Phosphorylation and Regulation of the Tumor Suppressor pVHL by Glycogen Synthase Kinase 3. Molecular and Cellular Biology, 2006, 26, 5784-5796.	1.1	72
20	Regulation of Renal Epithelial Tight Junctions by the von Hippel-Lindau Tumor Suppressor Gene Involves Occludin and Claudin 1 and Is Independent of E-Cadherin. Molecular Biology of the Cell, 2009, 20, 1089-1101.	0.9	70
21	Regulation of NDR2 Protein Kinase by Multi-site Phosphorylation and the S100B Calcium-binding Protein. Journal of Biological Chemistry, 2004, 279, 23806-23812.	1.6	66
22	Differential NDR/LATS Interactions with the Human MOB Family Reveal a Negative Role for Human MOB2 in the Regulation of Human NDR Kinases. Molecular and Cellular Biology, 2010, 30, 4507-4520.	1.1	66
23	The kinases NDR1/2 act downstream of the Hippo homolog MST1 to mediate both egress of thymocytes from the thymus and lymphocyte motility. Science Signaling, 2015, 8, ra100.	1.6	63
24	Downstream of human NDR kinases: Impacting on c-myc and p21 protein stability to control cell cycle progression. Cell Cycle, 2011, 10, 1897-1904.	1.3	62
25	Ablation of the Kinase NDR1 Predisposes Mice to the Development of T Cell Lymphoma. Science Signaling, 2010, 3, ra47.	1.6	60
26	The characterisation of LATS2 kinase regulation in Hippo-YAP signalling. Cellular Signalling, 2016, 28, 488-497.	1.7	59
27	Mammalian NDR protein kinases: From regulation to a role in centrosome duplication. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2008, 1784, 3-15.	1.1	58
28	MICAL-1 Is a Negative Regulator of MST-NDR Kinase Signaling and Apoptosis. Molecular and Cellular Biology, 2011, 31, 3603-3615.	1.1	54
29	The Hippo pathway in disease and therapy: cancer and beyond. Clinical and Translational Medicine, 2014, 3, 22.	1.7	51
30	The Pro-apoptotic STK38 Kinase Is a New Beclin1 Partner Positively Regulating Autophagy. Current Biology, 2015, 25, 2479-2492.	1.8	47
31	The NDR/LATS protein kinases in immunology and cancer biology. Seminars in Cancer Biology, 2018, 48, 104-114.	4.3	43
32	MOB (Mps one Binder) Proteins in the Hippo Pathway and Cancer. Cells, 2019, 8, 569.	1.8	37
33	LATS1 but not LATS2 represses autophagy by a kinase-independent scaffold function. Nature Communications, 2019, 10, 5755.	5.8	36
34	Relevance of Nuclear and Cytoplasmic von Hippel Lindau Protein Expression for Renal Carcinoma Progression. American Journal of Pathology, 2003, 163, 1013-1020.	1.9	34
35	Constitutively active NDR1-PIF kinase functions independent of MST1 and hMOB1 signalling. Cellular Signalling, 2014, 26, 1657-1667.	1.7	34
36	<scp>STK</scp> 38 kinase acts as <scp>XPO</scp> 1 gatekeeper regulating the nuclear export of autophagy proteins and other cargoes. EMBO Reports, 2019, 20, e48150.	2.0	34

Alexander Hergovich

#	Article	IF	CITATIONS
37	YAP-Hippo signalling downstream of leukemia inhibitory factor receptor: implications for breast cancer. Breast Cancer Research, 2012, 14, 326.	2.2	32
38	Stable MOB1 interaction with Hippo/MST is not essential for development and tissue growth control. Nature Communications, 2017, 8, 695.	5.8	32
39	Regulation of DNA damage responses and cell cycle progression by hMOB2. Cellular Signalling, 2015, 27, 326-339.	1.7	30
40	TAZ-Mediated Crosstalk between Wnt and Hippo Signaling. Developmental Cell, 2010, 18, 508-509.	3.1	24
41	A Hippo-like Signaling Pathway Controls Tracheal Morphogenesis in Drosophila melanogaster. Developmental Cell, 2018, 47, 564-575.e5.	3.1	24
42	Regulation of NDR1 activity by PLK1 ensures proper spindle orientation in mitosis. Scientific Reports, 2015, 5, 10449.	1.6	23
43	NDR Kinases Are Essential for Somitogenesis and Cardiac Looping during Mouse Embryonic Development. PLoS ONE, 2015, 10, e0136566.	1.1	23
44	NDR2 kinase contributes to cell invasion and cytokinesis defects induced by the inactivation of RASSF1A tumor-suppressor gene in lung cancer cells. Journal of Experimental and Clinical Cancer Research, 2019, 38, 158.	3.5	22
45	The Hippo network kinase STK38 contributes to protein homeostasis by inhibiting BAG3-mediated autophagy. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 1556-1566.	1.9	20
46	Rassf5 and Ndr kinases act in a novel pathway regulating neuronal polarity through Par3 phosphorylation. Journal of Cell Science, 2014, 127, 3463-76.	1.2	19
47	hMOB3 Modulates MST1 Apoptotic Signaling and Supports Tumor Growth in Glioblastoma Multiforme. Cancer Research, 2014, 74, 3779-3789.	0.4	18
48	Mitochondrial clearance by the STK38 kinase supports oncogenic Ras-induced cell transformation. Oncotarget, 2016, 7, 44142-44160.	0.8	17
49	Generation of Stable Human Cell Lines with Tetracycline-inducible (Tet-on) shRNA or cDNA Expression. Journal of Visualized Experiments, 2013, , e50171.	0.2	13
50	STK38 at the crossroad between autophagy and apoptosis. Autophagy, 2016, 12, 594-595.	4.3	12
51	Hippo Signaling in Mitosis: An Updated View in Light of the MEN Pathway. Methods in Molecular Biology, 2017, 1505, 265-277.	0.4	12
52	Nuclear Dbf2-related protein kinases (NDRs) in isolated cardiac myocytes and the myocardium: Activation by cellular stresses and by phosphoprotein serine-/threonine-phosphatase inhibitors. Cellular Signalling, 2008, 20, 1564-1577.	1.7	8
53	STK38L kinase ablation promotes loss of cell viability in a subset of KRAS-dependent pancreatic cancer cell lines. Oncotarget, 2017, 8, 78556-78572.	0.8	8
54	OLA1 in Centrosome Biology alongside the BRCA1/BARD1 Complex: Looking beyond Centrosomes. Molecular Cell, 2014, 53, 3-5.	4.5	6

#	Article	IF	CITATIONS
55	The Possible Crosstalk of MOB2 With NDR1/2 Kinases in Cell Cycle and DNA Damage Signaling. Journal of Cell Signaling, 2016, 01, .	0.3	5
56	hMOB2 deficiency impairs homologous recombination-mediated DNA repair and sensitises cancer cells to PARP inhibitors. Cellular Signalling, 2021, 87, 110106.	1.7	5
57	<scp>YAP</scp> needs Nemo to guide a Hippo. EMBO Reports, 2017, 18, 3-4.	2.0	3
58	The Possible Crosstalk of MOB2 With NDR1/2 Kinases in Cell Cycle and DNA Damage Signaling. , 2016, 1, 125.		3
59	MST1/2 Kinase Assays Using Recombinant Proteins. Methods in Molecular Biology, 2019, 1893, 319-331.	0.4	2
60	The promise of using histone deacetylase inhibitors in combination treatment against breast cancer and other solid tumors. Chinese Clinical Oncology, 2017, 6, 9-9.	0.4	2
61	Measuring the Kinase Activities of the LATS/NDR Protein Kinases. Methods in Molecular Biology, 2019, 1893, 305-317.	0.4	ο