Barbora Hrcka Krausova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9657935/publications.pdf

Version: 2024-02-01

20 papers

677 citations

759233 12 h-index 752698 20 g-index

20 all docs

20 docs citations

times ranked

20

798 citing authors

#	Article	IF	CITATIONS
1	Palmitoylation Controls NMDA Receptor Function and Steroid Sensitivity. Journal of Neuroscience, 2021, 41, 2119-2134.	3.6	12
2	7-phenoxytacrine is a dually acting drug with neuroprotective efficacy in vivo. Biochemical Pharmacology, 2021, 186, 114460.	4.4	12
3	Specific pathogenic mutations in the M3 domain of the GluN1 subunit regulate the surface delivery and pharmacological sensitivity of NMDA receptors. Neuropharmacology, 2021, 189, 108528.	4.1	9
4	Endogenous neurosteroids pregnanolone and pregnanolone sulfate potentiate presynaptic glutamate release through distinct mechanisms. British Journal of Pharmacology, 2021, 178, 3888-3904.	5.4	4
5	The pathogenic S688Y mutation in the ligand-binding domain of the GluN1 subunit regulates the properties of NMDA receptors. Scientific Reports, 2020, 10, 18576.	3.3	13
6	Site of Action of Brain Neurosteroid Pregnenolone Sulfate at the N-Methyl-D-Aspartate Receptor. Journal of Neuroscience, 2020, 40, 5922-5936.	3 . 6	18
7	Structural features in the glycine-binding sites of the GluN1 and GluN3A subunits regulate the surface delivery of NMDA receptors. Scientific Reports, 2019, 9, 12303.	3.3	23
8	Positive Modulators of the <i>N</i> -Methyl- <scp>d</scp> -aspartate Receptor: Structure–Activity Relationship Study of Steroidal 3-Hemiesters. Journal of Medicinal Chemistry, 2018, 61, 4505-4516.	6.4	20
9	Strong Inhibitory Effect, Low Cytotoxicity and High Plasma Stability of Steroidal Inhibitors of N-Methyl-D-Aspartate Receptors With C-3 Amide Structural Motif. Frontiers in Pharmacology, 2018, 9, 1299.	3.5	9
10	Surface Expression, Function, and Pharmacology of Disease-Associated Mutations in the Membrane Domain of the Human GluN2B Subunit. Frontiers in Molecular Neuroscience, 2018, 11, 110.	2.9	41
11	Physicochemical and biological properties of novel amide-based steroidal inhibitors of NMDA receptors. Steroids, 2017, 117, 52-61.	1.8	22
12	Neurosteroid-like Inhibitors of <i>N</i> -Methyl- <scp>d</scp> -aspartate Receptor: Substituted 2-Sulfates and 2-Hemisuccinates of Perhydrophenanthrene. Journal of Medicinal Chemistry, 2016, 59, 4724-4739.	6.4	12
13	Preferential Inhibition of Tonically over Phasically Activated NMDA Receptors by Pregnane Derivatives. Journal of Neuroscience, 2016, 36, 2161-2175.	3. 6	44
14	Analysis of Whole-Cell NMDA Receptor Currents. Neuromethods, 2016, , 205-219.	0.3	4
15	Block of NMDA receptor channels by endogenous neurosteroids: implications for the agonist induced conformational states of the channel vestibule. Scientific Reports, 2015, 5, 10935.	3.3	52
16	Cholesterol modulates open probability and desensitization of NMDA receptors. Journal of Physiology, 2015, 593, 2279-2293.	2.9	86
17	A New Class of Potent <i>N</i> -Methyl- <scp>d</scp> -Aspartate Receptor Inhibitors: Sulfated Neuroactive Steroids with Lipophilic D-Ring Modifications. Journal of Medicinal Chemistry, 2015, 58, 5950-5966.	6.4	26
18	Structure, Function, and Pharmacology of NMDA Receptor Channels. Physiological Research, 2014, 63, S191-S203.	0.9	216

#	Article	IF	CITATIONS
19	Key Amino Acid Residues within the Third Membrane Domains of NR1 and NR2 Subunits Contribute to the Regulation of the Surface Delivery of N-methyl-d-aspartate Receptors. Journal of Biological Chemistry, 2012, 287, 26423-26434.	3.4	51
20	Neuroactive steroids with perfluorobenzoyl group. Steroids, 2012, 77, 1233-1241.	1.8	3