
Barbora Hrcka Krausova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9657935/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure, Function, and Pharmacology of NMDA Receptor Channels. Physiological Research, 2014, 63, S191-S203.	0.9	216
2	Cholesterol modulates open probability and desensitization of NMDA receptors. Journal of Physiology, 2015, 593, 2279-2293.	2.9	86
3	Block of NMDA receptor channels by endogenous neurosteroids: implications for the agonist induced conformational states of the channel vestibule. Scientific Reports, 2015, 5, 10935.	3.3	52
4	Key Amino Acid Residues within the Third Membrane Domains of NR1 and NR2 Subunits Contribute to the Regulation of the Surface Delivery of N-methyl-d-aspartate Receptors. Journal of Biological Chemistry, 2012, 287, 26423-26434.	3.4	51
5	Preferential Inhibition of Tonically over Phasically Activated NMDA Receptors by Pregnane Derivatives. Journal of Neuroscience, 2016, 36, 2161-2175.	3.6	44
6	Surface Expression, Function, and Pharmacology of Disease-Associated Mutations in the Membrane Domain of the Human GluN2B Subunit. Frontiers in Molecular Neuroscience, 2018, 11, 110.	2.9	41
7	A New Class of Potent <i>N</i> -Methyl- <scp>d</scp> -Aspartate Receptor Inhibitors: Sulfated Neuroactive Steroids with Lipophilic D-Ring Modifications. Journal of Medicinal Chemistry, 2015, 58, 5950-5966.	6.4	26
8	Structural features in the glycine-binding sites of the GluN1 and GluN3A subunits regulate the surface delivery of NMDA receptors. Scientific Reports, 2019, 9, 12303.	3.3	23
9	Physicochemical and biological properties of novel amide-based steroidal inhibitors of NMDA receptors. Steroids, 2017, 117, 52-61.	1.8	22
10	Positive Modulators of the <i>N</i> -Methyl- <scp>d</scp> -aspartate Receptor: Structure–Activity Relationship Study of Steroidal 3-Hemiesters. Journal of Medicinal Chemistry, 2018, 61, 4505-4516.	6.4	20
11	Site of Action of Brain Neurosteroid Pregnenolone Sulfate at the N-Methyl-D-Aspartate Receptor. Journal of Neuroscience, 2020, 40, 5922-5936.	3.6	18
12	The pathogenic S688Y mutation in the ligand-binding domain of the GluN1 subunit regulates the properties of NMDA receptors. Scientific Reports, 2020, 10, 18576.	3.3	13
13	Neurosteroid-like Inhibitors of <i>N</i> -Methyl- <scp>d</scp> -aspartate Receptor: Substituted 2-Sulfates and 2-Hemisuccinates of Perhydrophenanthrene. Journal of Medicinal Chemistry, 2016, 59, 4724-4739.	6.4	12
14	Palmitoylation Controls NMDA Receptor Function and Steroid Sensitivity. Journal of Neuroscience, 2021, 41, 2119-2134.	3.6	12
15	7-phenoxytacrine is a dually acting drug with neuroprotective efficacy in vivo. Biochemical Pharmacology, 2021, 186, 114460.	4.4	12
16	Strong Inhibitory Effect, Low Cytotoxicity and High Plasma Stability of Steroidal Inhibitors of N-Methyl-D-Aspartate Receptors With C-3 Amide Structural Motif. Frontiers in Pharmacology, 2018, 9, 1299.	3.5	9
17	Specific pathogenic mutations in the M3 domain of the GluN1 subunit regulate the surface delivery and pharmacological sensitivity of NMDA receptors. Neuropharmacology, 2021, 189, 108528.	4.1	9
18	Endogenous neurosteroids pregnanolone and pregnanolone sulfate potentiate presynaptic glutamate release through distinct mechanisms. British Journal of Pharmacology, 2021, 178, 3888-3904.	5.4	4

#	Article	IF	CITATIONS
19	Analysis of Whole-Cell NMDA Receptor Currents. Neuromethods, 2016, , 205-219.	0.3	4
20	Neuroactive steroids with perfluorobenzoyl group. Steroids, 2012, 77, 1233-1241.	1.8	3