Sho Ohta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9656320/publications.pdf

Version: 2024-02-01

933410 1058452 14 396 10 14 citations h-index g-index papers 14 14 14 740 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	MYCL-mediated reprogramming expands pancreatic insulin-producing cells. Nature Metabolism, 2022, 4, 254-268.	11.9	7
2	The oncogene-dependent resistance to reprogramming unveils cancer therapeutic targets. Cell Reports, 2022, 39, 110721.	6.4	8
3	NF-κB dynamics determine the stimulus specificity of epigenomic reprogramming in macrophages. Science, 2021, 372, 1349-1353.	12.6	91
4	DMRT1-mediated reprogramming drives development of cancer resembling human germ cell tumors with features of totipotency. Nature Communications, 2021, 12, 5041.	12.8	17
5	Identification of distinct loci for de novo DNA methylation by DNMT3A and DNMT3B during mammalian development. Nature Communications, 2020, 11, 3199.	12.8	48
6	RNA-binding protein Ptbp1 regulates alternative splicing and transcriptome in spermatogonia and maintains spermatogenesis in concert with Nanos3. Journal of Reproduction and Development, 2020, 66, 459-467.	1.4	3
7	Cell-type dependent enhancer binding of the EWS/ATF1 fusion gene in clear cell sarcomas. Nature Communications, 2019, 10, 3999.	12.8	20
8	Smarcb1 maintains the cellular identity and the chromatin landscapes of mouse embryonic stem cells. Biochemical and Biophysical Research Communications, 2019, 519, 705-713.	2.1	4
9	De Novo DNA Methylation at Imprinted Loci during Reprogramming intoÂNaive and Primed Pluripotency. Stem Cell Reports, 2019, 12, 1113-1128.	4.8	19
10	Human Pluripotent Stem Cell-Derived Tumor Model Uncovers the Embryonic Stem Cell Signature as a Key Driver in Atypical Teratoid/Rhabdoid Tumor. Cell Reports, 2019, 26, 2608-2621.e6.	6.4	29
11	A Regulatory Circuit Controlling the Dynamics of NFήB cRel Transitions B Cells from Proliferation to Plasma Cell Differentiation. Immunity, 2019, 50, 616-628.e6.	14.3	58
12	Sequential conditioning-stimulation reveals distinct gene- and stimulus-specific effects of Type I and II IFN on human macrophage functions. Scientific Reports, 2019, 9, 5288.	3.3	26
13	Induction of Pluripotency in Astrocytes through a Neural Stem Cell-like State. Journal of Biological Chemistry, 2015, 290, 31173-31188.	3.4	13
14	Global Splicing Pattern Reversion during Somatic Cell Reprogramming. Cell Reports, 2013, 5, 357-366.	6.4	53