Thomas Andlid

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9653378/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Extracts of Digested Berries Increase the Survival of Saccharomyces cerevisiae during H2O2 Induced Oxidative Stress. Molecules, 2021, 26, 1057.	3.8	4
2	Isolation, identification, and selection of strains as candidate probiotics and starters for fermentation of Swedish legumes. Food and Nutrition Research, 2020, 64, .	2.6	8
3	Effects of Pulsed Electric Field-Assisted Osmotic Dehydration and Edible Coating on the Recovery of Anthocyanins from In Vitro Digested Berries. Foods, 2019, 8, 505.	4.3	11
4	Tailoring bilberry powder functionality through processing: Effects of drying and fractionation on the stability of total polyphenols and anthocyanins. Food Science and Nutrition, 2019, 7, 1017-1026.	3.4	8
5	Appetite and Subsequent Food Intake Were Unaffected by the Amount of Sourdough and Rye in Soft Bread—A Randomized Cross-Over Breakfast Study. Nutrients, 2018, 10, 1594.	4.1	5
6	Supercritical Fluid Extraction of Berry Seeds: Chemical Composition and Antioxidant Activity. Journal of Food Quality, 2018, 2018, 1-10.	2.6	25
7	Bifidobacterium callitrichidarum sp. nov. from the faeces of the emperor tamarin (Saguinus) Tj ETQq1 1 0.784314	rgBT /Ov 1:7	erlock 10 Tf 25
8	Strain improvement of <i>Pichia kudriavzevii</i> TY13 for raised phytase production and reduced phosphate repression. Microbial Biotechnology, 2017, 10, 341-353.	4.2	17
9	Isolation, Identification and Characterization of Yeasts from Fermented Goat Milk of the Yaghnob Valley in Tajikistan. Frontiers in Microbiology, 2016, 7, 1690.	3.5	38
10	Secretion of non-cell-bound phytase by the yeast <i>Pichia kudriavzevii</i> TY13. Journal of Applied Microbiology, 2015, 118, 1126-1136.	3.1	18
11	Assessing phytase activity. Journal of Biological Methods, 2015, 2, e16.	0.6	33
12	Biosynthesis and cellular content of folate in bifidobacteria across host species with different diets. Anaerobe, 2014, 30, 169-177.	2.1	25
13	Degradation of phytate by Pichia kudriavzevii TY13 and Hanseniaspora guilliermondii TY14 in Tanzanian togwa. International Journal of Food Microbiology, 2012, 153, 73-77.	4.7	29
14	The potential of bifidobacteria as a source of natural folate. Journal of Applied Microbiology, 2012, 112, 975-984.	3.1	85
15	Biodiversity and phytase capacity of yeasts isolated from Tanzanian togwa. International Journal of Food Microbiology, 2010, 136, 352-358.	4.7	50
16	Determination of Fe ²⁺ and Fe ³⁺ in Aqueous Solutions Containing Food Chelators by Differential Pulse Anodic Stripping Voltammetry. Electroanalysis, 2010, 22, 1090-1096.	2.9	40
17	Phytate degradation by human gut isolated Bifidobacterium pseudocatenulatum ATCC27919 and its probiotic potential. International Journal of Food Microbiology, 2009, 135, 7-14.	4.7	48
18	Blocking Peptides Decrease Tissue Transglutaminase Processing of Gliadin in Vitro. Journal of Agricultural and Food Chemistry, 2009, 57, 10150-10155.	5.2	7

THOMAS ANDLID

#	Article	IF	CITATIONS
19	Impaired uptake of β-carotene by Caco-2 human intestinal cells in the presence of iron. International Journal of Food Sciences and Nutrition, 2009, 60, 125-135.	2.8	9
20	Production of folates by yeasts in Tanzanian fermented togwa. FEMS Yeast Research, 2008, 8, 781-787.	2.3	42
21	Growth rate and medium composition strongly affect folate content in Saccharomyces cerevisiae. International Journal of Food Microbiology, 2008, 123, 93-100.	4.7	37
22	Biofortification of folates in white wheat bread by selection of yeast strain and process. International Journal of Food Microbiology, 2008, 127, 32-36.	4.7	41
23	Effect of Nutrient Starvation on the Cellular Composition and Metabolic Capacity of Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2007, 73, 4839-4848.	3.1	40
24	Improved extracellular phytase activity in Saccharomyces cerevisiae by modifications in the PHO system. International Journal of Food Microbiology, 2006, 108, 60-67.	4.7	20
25	Lactic acid fermentation stimulated iron absorption by Caco-2 cells is associated with increased soluble iron content in carrot juice. British Journal of Nutrition, 2006, 96, 705-11.	2.3	31
26	Improved iron solubility in carrot juice fermented by homo- and hetero-fermentative lactic acid bacteria. Food Microbiology, 2005, 22, 53-61.	4.2	50
27	Degradation of Phytate by High-PhytaseSaccharomyces cerevisiaeStrains during Simulated Gastrointestinal Digestion. Journal of Agricultural and Food Chemistry, 2005, 53, 5438-5444.	5.2	42
28	Lactic Acid Decreases Fe(II) and Fe(III) Retention but Increases Fe(III) Transepithelial Transfer by Caco-2 Cells. Journal of Agricultural and Food Chemistry, 2005, 53, 6919-6923.	5.2	14
29	Inherent biodiversity of folate content and composition in yeasts. Trends in Food Science and Technology, 2005, 16, 311-316.	15.1	52
30	Development of a Simplified Method for the Determination of Folates in Baker's Yeast by HPLC with Ultraviolet and Fluorescence Detection. Journal of Agricultural and Food Chemistry, 2005, 53, 2406-2411.	5.2	82
31	Metabolism of extracellular inositol hexaphosphate (phytate) by Saccharomyces cerevisiae. International Journal of Food Microbiology, 2004, 97, 157-169.	4.7	46
32	Phytate content is reduced andβ-glucanase activity suppressed in malted barley steeped with lactic acid at high temperature. Journal of the Science of Food and Agriculture, 2004, 84, 653-662.	3.5	34
33	Microbial leaching of uranium and other trace elements from shale mine tailings at Ranstad. Geoderma, 2004, 122, 177-194.	5.1	78
34	Prolonged Transit Time through the Stomach and Small Intestine Improves Iron Dialyzability and Uptake in Vitro. Journal of Agricultural and Food Chemistry, 2003, 51, 5131-5136.	5.2	23
35	Combined Impact of pH and Organic Acids on Iron Uptake by Caco-2 Cells. Journal of Agricultural and Food Chemistry, 2003, 51, 7820-7824.	5.2	45
36	Mobilisation of Radionuclides by Ligands Produced by Bacteria from the Deep Subsurface. Materials Research Society Symposia Proceedings, 2003, 807, 433.	0.1	3

THOMAS ANDLID

#	Article	IF	CITATIONS
37	Organic Acids Influence Iron Uptake in the Human Epithelial Cell Line Caco-2. Journal of Agricultural and Food Chemistry, 2002, 50, 6233-6238.	5.2	90
38	Phytogenic and microbial phytases in human nutrition. International Journal of Food Science and Technology, 2002, 37, 823-833.	2.7	98
39	Phytate degradation by micro-organisms in synthetic media and pea flour. Journal of Applied Microbiology, 2002, 93, 197-204.	3.1	38
40	Inositol Hexaphosphate Hydrolysis by Baker's Yeast. Capacity, Kinetics, and Degradation Products. Journal of Agricultural and Food Chemistry, 2000, 48, 100-104.	5.2	68
41	Characterization of Saccharomyces cerevisiae CBS 7764 Isolated From Rainbow Trout Intestine. Systematic and Applied Microbiology, 1999, 22, 145-155.	2.8	20
42	Yeast colonizing the intestine of rainbow trout (Salmo gairdneri) and turbot (Scophtalmus maximus). Microbial Ecology, 1995, 30, 321-34.	2.8	96
43	Cell surface hydrophobicity and its relation to adhesion of yeasts isolated from fish gut. Colloids and Surfaces B: Biointerfaces, 1994, 2, 199-208.	5.0	22
44	The expression of potential colonization factors of yeasts isolated from fish during different growth conditions. Canadian Journal of Microbiology, 1993, 39, 1135-1141.	1.7	22