Kazi M Alam

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9652984/kazi-m-alam-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

26 665 11 25 g-index h-index citations papers 7.6 4.26 31 953 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
26	Hot hole transfer from Ag nanoparticles to multiferroic YMn2O5 nanowires enables superior photocatalytic activity. <i>Journal of Materials Chemistry C</i> , 2022 , 10, 4128-4139	7.1	O
25	Effect of morphology on the photoelectrochemical performance of nanostructured CuO photocathodes. <i>Nanotechnology</i> , 2021 , 32,	3.4	1
24	Photocatalytic Mechanism Control and Study of Carrier Dynamics in CdS@CN Core-Shell Nanowires. <i>ACS Applied Materials & Dynamics (Materials & Dynamics)</i> 13, 47418-47439	9.5	11
23	Nonlithographic Formation of TaO Nanodimple Arrays Using Electrochemical Anodization and Their Use in Plasmonic Photocatalysis for Enhancement of Local Field and Catalytic Activity. <i>ACS Applied Materials & Mat</i>	9.5	4
22	Asymmetric Multipole Plasmon-Mediated Catalysis Shifts the Product Selectivity of CO Photoreduction toward C Products. <i>ACS Applied Materials & Description of Column 2018</i> , 1248-7258	9.5	16
21	Water-splitting photoelectrodes consisting of heterojunctions of carbon nitride with a-type low bandgap double perovskite oxide. <i>Nanotechnology</i> , 2021 , 32,	3.4	1
20	Harvesting Hot Holes in Plasmon-Coupled Ultrathin Photoanodes for High-Performance Photoelectrochemical Water Splitting. <i>ACS Applied Materials & amp; Interfaces</i> , 2021 , 13, 42741-42752	9.5	9
19	Synthesis and Characterization of Zinc Phthalocyanine-Cellulose Nanocrystal (CNC) Conjugates: Toward Highly Functional CNCs. <i>ACS Applied Materials & Emp; Interfaces</i> , 2020 , 12, 43992-44006	9.5	4
18	Plasmonic photocatalysis and SERS sensing using ellipsometrically modeled Ag nanoisland substrates. <i>Nanotechnology</i> , 2020 , 31, 365301	3.4	12
17	Mapping the surface potential, charge density and adhesion of cellulose nanocrystals using advanced scanning probe microscopy. <i>Carbohydrate Polymers</i> , 2020 , 246, 116393	10.3	2
16	CVD grown nitrogen doped graphene is an exceptional visible-light driven photocatalyst for surface catalytic reactions. <i>2D Materials</i> , 2020 , 7, 015002	5.9	6
15	Consistently High Values in p-i-n Type Perovskite Solar Cells Using Ni-Doped NiO Nanomesh as the Hole Transporting Layer. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 11467-11478	9.5	33
14	Noble Metal Free, Visible Light Driven Photocatalysis Using TiO2 Nanotube Arrays Sensitized by P-Doped C3N4 Quantum Dots. <i>Advanced Optical Materials</i> , 2020 , 8, 1901275	8.1	34
13	Enhanced charge separation in g-C3N4 B iOI heterostructures for visible light driven photoelectrochemical water splitting. <i>Nanoscale Advances</i> , 2019 , 1, 1460-1471	5.1	77
12	High rate CO2 photoreduction using flame annealed TiO2 nanotubes. <i>Applied Catalysis B:</i> Environmental, 2019 , 243, 522-536	21.8	88
11	CN: A Low Bandgap Semiconductor Containing an Azo-Linked Carbon Nitride Framework for Photocatalytic, Photovoltaic and Adsorbent Applications. <i>Journal of the American Chemical Society</i> , 2019 , 141, 5415-5436	16.4	208
10	Remarkable self-organization and unusual conductivity behavior in cellulose nanocrystal-PEDOT: PSS nanocomposites. <i>Journal of Materials Science: Materials in Electronics</i> , 2019 , 30, 1390-1399	2.1	10

LIST OF PUBLICATIONS

9	Heterojunctions of halogen-doped carbon nitride nanosheets and BiOI for sunlight-driven water-splitting. <i>Nanotechnology</i> , 2019 , 31, 084001	3.4	14
8	Spin Filtering with Helical Potentials. <i>Materials and Energy</i> , 2018 , 131-172		
7	Long Carbon Nanotubes Functionalized with DNA and Implications for Spintronics. <i>ACS Omega</i> , 2018 , 3, 17108-17115	3.9	3
6	Arrays of TiO2 nanorods embedded with fluorine doped carbon nitride quantum dots (CNFQDs) for visible light driven water splitting. <i>Carbon</i> , 2018 , 137, 174-187	10.4	50
5	Spin filtering with poly-T wrapped single wall carbon nanotubes. <i>Nanoscale</i> , 2017 , 9, 5155-5163	7.7	10
4	Spin Filtering through Single-Wall Carbon Nanotubes Functionalized with Single-Stranded DNA. <i>Advanced Functional Materials</i> , 2015 , 25, 3210-3218	15.6	41
3	Suppression of spin relaxation in rubrene nanowire spin valves. <i>Applied Physics Letters</i> , 2012 , 101, 19240	03.4	11
2	Template-Assisted Synthesis of Econjugated Molecular Organic Nanowires in the Sub-100 nm Regime and Device Implications. <i>Advanced Functional Materials</i> , 2012 , 22, 3298-3306	15.6	17
1	High Density Integration of Carbon Nanotube Spin Valves 2011 ,		1